MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthdlem1 Structured version   Visualization version   GIF version

Theorem 2pthdlem1 27048
Description: Lemma 1 for 2pthd 27058. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
2pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑉(𝑗)

Proof of Theorem 2pthdlem1
StepHypRef Expression
1 2wlkd.n . . . 4 (𝜑 → (𝐴𝐵𝐵𝐶))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
4 2wlkd.s . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
52, 3, 42wlkdlem3 27045 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
6 simpl 474 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
7 simpr 479 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
86, 7neeq12d 2991 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
98bicomd 213 . . . . . . . . . 10 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1093adant3 1127 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1110biimpcd 239 . . . . . . . 8 (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1211adantr 472 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1312imp 444 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 eqid 2758 . . . . . 6 1 = 1
16 eqneqall 2941 . . . . . 6 (1 = 1 → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
1715, 16mp1i 13 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
18 simpr 479 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
19 simpl 474 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
2018, 19neeq12d 2991 . . . . . . . . . . 11 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ≠ (𝑃‘1) ↔ 𝐶𝐵))
21 necom 2983 . . . . . . . . . . 11 (𝐶𝐵𝐵𝐶)
2220, 21syl6rbb 277 . . . . . . . . . 10 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
23223adant1 1125 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
2423biimpcd 239 . . . . . . . 8 (𝐵𝐶 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2524adantl 473 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2625imp 444 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘2) ≠ (𝑃‘1))
2726a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
2814, 17, 273jca 1123 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
291, 5, 28syl2anc 696 . . 3 (𝜑 → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
302fveq2i 6353 . . . . . . . 8 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶”⟩)
31 s3len 13837 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3230, 31eqtri 2780 . . . . . . 7 (♯‘𝑃) = 3
3332oveq2i 6822 . . . . . 6 (0..^(♯‘𝑃)) = (0..^3)
34 fzo0to3tp 12746 . . . . . 6 (0..^3) = {0, 1, 2}
3533, 34eqtri 2780 . . . . 5 (0..^(♯‘𝑃)) = {0, 1, 2}
3635raleqi 3279 . . . 4 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
37 c0ex 10224 . . . . 5 0 ∈ V
38 1ex 10225 . . . . 5 1 ∈ V
39 2ex 11282 . . . . 5 2 ∈ V
40 neeq1 2992 . . . . . 6 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
41 fveq2 6350 . . . . . . 7 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4241neeq1d 2989 . . . . . 6 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
4340, 42imbi12d 333 . . . . 5 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
44 neeq1 2992 . . . . . 6 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
45 fveq2 6350 . . . . . . 7 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
4645neeq1d 2989 . . . . . 6 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
4744, 46imbi12d 333 . . . . 5 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
48 neeq1 2992 . . . . . 6 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
49 fveq2 6350 . . . . . . 7 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
5049neeq1d 2989 . . . . . 6 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
5148, 50imbi12d 333 . . . . 5 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5237, 38, 39, 43, 47, 51raltp 4382 . . . 4 (∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5336, 52bitri 264 . . 3 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5429, 53sylibr 224 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
553fveq2i 6353 . . . . . . . 8 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
56 s2len 13832 . . . . . . . 8 (♯‘⟨“𝐽𝐾”⟩) = 2
5755, 56eqtri 2780 . . . . . . 7 (♯‘𝐹) = 2
5857oveq2i 6822 . . . . . 6 (1..^(♯‘𝐹)) = (1..^2)
59 fzo12sn 12743 . . . . . 6 (1..^2) = {1}
6058, 59eqtri 2780 . . . . 5 (1..^(♯‘𝐹)) = {1}
6160raleqi 3279 . . . 4 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
62 neeq2 2993 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
63 fveq2 6350 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
6463neeq2d 2990 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
6562, 64imbi12d 333 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
6638, 65ralsn 4364 . . . 4 (∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6761, 66bitri 264 . . 3 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6867ralbii 3116 . 2 (∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6954, 68sylibr 224 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  wral 3048  {csn 4319  {ctp 4323  cfv 6047  (class class class)co 6811  0cc0 10126  1c1 10127  2c2 11260  3c3 11261  ..^cfzo 12657  chash 13309  ⟨“cs2 13784  ⟨“cs3 13785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-fzo 12658  df-hash 13310  df-word 13483  df-concat 13485  df-s1 13486  df-s2 13791  df-s3 13792
This theorem is referenced by:  2pthd  27058
  Copyright terms: Public domain W3C validator