![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2pmaplubN | Structured version Visualization version GIF version |
Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspmaplub.u | ⊢ 𝑈 = (lub‘𝐾) |
sspmaplub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
sspmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
2pmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspmaplub.u | . . . . . . 7 ⊢ 𝑈 = (lub‘𝐾) | |
2 | sspmaplub.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | sspmaplub.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
4 | eqid 2760 | . . . . . . 7 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
5 | 1, 2, 3, 4 | 2polvalN 35721 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘𝑆))) |
6 | 5 | fveq2d 6357 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) = ((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) |
7 | 6 | fveq2d 6357 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆))))) |
8 | 2, 4 | polssatN 35715 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘𝑆) ⊆ 𝐴) |
9 | 2, 4 | 3polN 35723 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ((⊥𝑃‘𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
10 | 8, 9 | syldan 488 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
11 | 7, 10 | eqtr3d 2796 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
12 | hlclat 35166 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
13 | eqid 2760 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 2 | atssbase 35098 | . . . . . . 7 ⊢ 𝐴 ⊆ (Base‘𝐾) |
15 | sstr 3752 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾)) | |
16 | 14, 15 | mpan2 709 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐴 → 𝑆 ⊆ (Base‘𝐾)) |
17 | 13, 1 | clatlubcl 17333 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈‘𝑆) ∈ (Base‘𝐾)) |
18 | 12, 16, 17 | syl2an 495 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑈‘𝑆) ∈ (Base‘𝐾)) |
19 | 13, 2, 3 | pmapssat 35566 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑈‘𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) |
20 | 18, 19 | syldan 488 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) |
21 | 1, 2, 3, 4 | 2polvalN 35721 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) |
22 | 20, 21 | syldan 488 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) |
23 | 11, 22 | eqtr3d 2796 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) |
24 | 23, 5 | eqtr3d 2796 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ‘cfv 6049 Basecbs 16079 lubclub 17163 CLatccla 17328 Atomscatm 35071 HLchlt 35158 pmapcpmap 35304 ⊥𝑃cpolN 35709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-undef 7569 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-psubsp 35310 df-pmap 35311 df-polarityN 35710 |
This theorem is referenced by: paddunN 35734 |
Copyright terms: Public domain | W3C validator |