![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2p1e3 | Structured version Visualization version GIF version |
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
2p1e3 | ⊢ (2 + 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11272 | . 2 ⊢ 3 = (2 + 1) | |
2 | 1 | eqcomi 2769 | 1 ⊢ (2 + 1) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6813 1c1 10129 + caddc 10131 2c2 11262 3c3 11263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 df-3 11272 |
This theorem is referenced by: 1p2e3 11344 cnm2m1cnm3 11477 6t5e30 11836 6t5e30OLD 11837 7t5e35 11843 8t4e32 11848 9t4e36 11857 decbin3 11876 halfthird 11877 fz0to3un2pr 12635 m1modge3gt1 12911 fac3 13261 hash3 13386 hashtplei 13458 hashtpg 13459 s3len 13839 repsw3 13895 bpoly3 14988 bpoly4 14989 nn0o1gt2 15299 flodddiv4 15339 3exp3 16000 13prm 16025 37prm 16030 43prm 16031 83prm 16032 139prm 16033 163prm 16034 317prm 16035 631prm 16036 1259lem1 16040 1259lem2 16041 1259lem3 16042 1259lem4 16043 1259lem5 16044 1259prm 16045 2503lem2 16047 2503prm 16049 4001lem1 16050 4001lem2 16051 4001lem4 16053 4001prm 16054 dcubic1lem 24769 dcubic2 24770 mcubic 24773 log2ublem3 24874 log2ub 24875 birthday 24880 chtub 25136 2lgsoddprmlem3c 25336 istrkg3ld 25559 usgr2wlkspthlem2 26864 elwwlks2ons3im 27074 elwwlks2ons3OLD 27076 umgrwwlks2on 27078 elwwlks2 27088 elwspths2spth 27089 clwwlknonex2lem1 27256 clwwlknonex2lem2 27257 3wlkdlem5 27315 3wlkdlem10 27321 upgr3v3e3cycl 27332 upgr4cycl4dv4e 27337 konigsberglem1 27404 konigsberglem2 27405 konigsberglem3 27406 numclwlk1 27532 frgrregord013 27563 ex-hash 27621 threehalves 29932 lmat22det 30197 fib3 30774 prodfzo03 30990 hgt750lemd 31035 hgt750lem 31038 hgt750lem2 31039 jm2.23 38065 lt3addmuld 40014 wallispilem4 40788 wallispi2lem1 40791 stirlinglem11 40804 fmtno0 41962 fmtno5lem4 41978 fmtno4prmfac 41994 fmtno4nprmfac193 41996 139prmALT 42021 31prm 42022 m7prm 42026 lighneallem4a 42035 41prothprmlem2 42045 sbgoldbalt 42179 bgoldbtbndlem1 42203 tgoldbachlt 42214 tgoldbachltOLD 42220 pgrpgt2nabl 42657 |
Copyright terms: Public domain | W3C validator |