Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oppccomf Structured version   Visualization version   GIF version

Theorem 2oppccomf 16432
 Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 16444. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
2oppccomf (compf𝐶) = (compf‘(oppCat‘𝑂))

Proof of Theorem 2oppccomf
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
2 eqid 2651 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 16425 . . . . . . . 8 (Base‘𝐶) = (Base‘𝑂)
4 eqid 2651 . . . . . . . 8 (comp‘𝑂) = (comp‘𝑂)
5 eqid 2651 . . . . . . . 8 (oppCat‘𝑂) = (oppCat‘𝑂)
6 simpr1 1087 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
7 simpr2 1088 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
8 simpr3 1089 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
93, 4, 5, 6, 7, 8oppcco 16424 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝑂)𝑥)𝑔))
10 eqid 2651 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
112, 10, 1, 8, 7, 6oppcco 16424 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝑂)𝑥)𝑔) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
129, 11eqtr2d 2686 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1312ralrimivw 2996 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1413ralrimivw 2996 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1514ralrimivvva 3001 . . 3 (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
16 eqid 2651 . . . 4 (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂))
17 eqid 2651 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
18 eqidd 2652 . . . 4 (⊤ → (Base‘𝐶) = (Base‘𝐶))
191, 22oppcbas 16430 . . . . 5 (Base‘𝐶) = (Base‘(oppCat‘𝑂))
2019a1i 11 . . . 4 (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂)))
2112oppchomf 16431 . . . . 5 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
2221a1i 11 . . . 4 (⊤ → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
2310, 16, 17, 18, 20, 22comfeq 16413 . . 3 (⊤ → ((compf𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓)))
2415, 23mpbird 247 . 2 (⊤ → (compf𝐶) = (compf‘(oppCat‘𝑂)))
2524trud 1533 1 (compf𝐶) = (compf‘(oppCat‘𝑂))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030  ∀wral 2941  ⟨cop 4216  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  Hom chom 15999  compcco 16000  Homf chomf 16374  compfccomf 16375  oppCatcoppc 16418 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-hom 16013  df-cco 16014  df-homf 16378  df-comf 16379  df-oppc 16419 This theorem is referenced by:  oppcepi  16446  oppchofcl  16947  oppcyon  16956  oyoncl  16957
 Copyright terms: Public domain W3C validator