![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
2on | ⊢ 2𝑜 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 7731 | . 2 ⊢ 2𝑜 = suc 1𝑜 | |
2 | 1on 7737 | . . 3 ⊢ 1𝑜 ∈ On | |
3 | 2 | onsuci 7204 | . 2 ⊢ suc 1𝑜 ∈ On |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ 2𝑜 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 Oncon0 5884 suc csuc 5886 1𝑜c1o 7723 2𝑜c2o 7724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-ord 5887 df-on 5888 df-suc 5890 df-1o 7730 df-2o 7731 |
This theorem is referenced by: 3on 7741 o2p2e4 7792 oneo 7832 infxpenc 9051 infxpenc2 9055 mappwen 9145 pwcdaen 9219 sdom2en01 9336 fin1a2lem4 9437 xpslem 16455 xpsadd 16458 xpsmul 16459 xpsvsca 16461 xpsle 16463 xpsmnd 17551 xpsgrp 17755 efgval 18350 efgtf 18355 frgpcpbl 18392 frgp0 18393 frgpeccl 18394 frgpadd 18396 frgpmhm 18398 vrgpf 18401 vrgpinv 18402 frgpupf 18406 frgpup1 18408 frgpup2 18409 frgpup3lem 18410 frgpnabllem1 18496 frgpnabllem2 18497 xpstopnlem1 21834 xpstps 21835 xpstopnlem2 21836 xpsxmetlem 22405 xpsdsval 22407 nofv 32137 sltres 32142 noextendgt 32150 nolesgn2ores 32152 nosepnelem 32157 nosepdmlem 32160 nolt02o 32172 nosupno 32176 nosupbday 32178 nosupbnd1lem3 32183 nosupbnd1 32187 nosupbnd2lem1 32188 nosupbnd2 32189 ssoninhaus 32774 onint1 32775 1oequni2o 33545 finxpreclem4 33560 pw2f1ocnv 38124 frlmpwfi 38188 enrelmap 38811 clsk1indlem1 38863 clsk1independent 38864 |
Copyright terms: Public domain | W3C validator |