![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oconcl | Structured version Visualization version GIF version |
Description: Closure of the pair swapping function on 2𝑜. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
2oconcl | ⊢ (𝐴 ∈ 2𝑜 → (1𝑜 ∖ 𝐴) ∈ 2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4230 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) | |
2 | difeq2 3755 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1𝑜 ∖ 𝐴) = (1𝑜 ∖ ∅)) | |
3 | dif0 3983 | . . . . . . . 8 ⊢ (1𝑜 ∖ ∅) = 1𝑜 | |
4 | 2, 3 | syl6eq 2701 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1𝑜 ∖ 𝐴) = 1𝑜) |
5 | difeq2 3755 | . . . . . . . 8 ⊢ (𝐴 = 1𝑜 → (1𝑜 ∖ 𝐴) = (1𝑜 ∖ 1𝑜)) | |
6 | difid 3981 | . . . . . . . 8 ⊢ (1𝑜 ∖ 1𝑜) = ∅ | |
7 | 5, 6 | syl6eq 2701 | . . . . . . 7 ⊢ (𝐴 = 1𝑜 → (1𝑜 ∖ 𝐴) = ∅) |
8 | 4, 7 | orim12i 537 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → ((1𝑜 ∖ 𝐴) = 1𝑜 ∨ (1𝑜 ∖ 𝐴) = ∅)) |
9 | 8 | orcomd 402 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → ((1𝑜 ∖ 𝐴) = ∅ ∨ (1𝑜 ∖ 𝐴) = 1𝑜)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ {∅, 1𝑜} → ((1𝑜 ∖ 𝐴) = ∅ ∨ (1𝑜 ∖ 𝐴) = 1𝑜)) |
11 | 1on 7612 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
12 | difexg 4841 | . . . . . 6 ⊢ (1𝑜 ∈ On → (1𝑜 ∖ 𝐴) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (1𝑜 ∖ 𝐴) ∈ V |
14 | 13 | elpr 4231 | . . . 4 ⊢ ((1𝑜 ∖ 𝐴) ∈ {∅, 1𝑜} ↔ ((1𝑜 ∖ 𝐴) = ∅ ∨ (1𝑜 ∖ 𝐴) = 1𝑜)) |
15 | 10, 14 | sylibr 224 | . . 3 ⊢ (𝐴 ∈ {∅, 1𝑜} → (1𝑜 ∖ 𝐴) ∈ {∅, 1𝑜}) |
16 | df2o3 7618 | . . 3 ⊢ 2𝑜 = {∅, 1𝑜} | |
17 | 15, 16 | syl6eleqr 2741 | . 2 ⊢ (𝐴 ∈ {∅, 1𝑜} → (1𝑜 ∖ 𝐴) ∈ 2𝑜) |
18 | 17, 16 | eleq2s 2748 | 1 ⊢ (𝐴 ∈ 2𝑜 → (1𝑜 ∖ 𝐴) ∈ 2𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ∅c0 3948 {cpr 4212 Oncon0 5761 1𝑜c1o 7598 2𝑜c2o 7599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-suc 5767 df-1o 7605 df-2o 7606 |
This theorem is referenced by: efgmf 18172 efgmnvl 18173 efglem 18175 frgpuplem 18231 |
Copyright terms: Public domain | W3C validator |