Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nodd Structured version   Visualization version   GIF version

Theorem 2nodd 41577
Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
2nodd 2 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 2nodd
StepHypRef Expression
1 halfnz 11440 . . . . . . . . 9 ¬ (1 / 2) ∈ ℤ
2 eleq1 2687 . . . . . . . . 9 ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ))
31, 2mtbii 316 . . . . . . . 8 ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ)
43con2i 134 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥)
5 1cnd 10041 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
6 zcn 11367 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 2cnd 11078 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
8 2ne0 11098 . . . . . . . . 9 2 ≠ 0
98a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
105, 6, 7, 9divmul2d 10819 . . . . . . 7 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
114, 10mtbid 314 . . . . . 6 (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥))
12 eqcom 2627 . . . . . . . 8 (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)
1312a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2))
147, 6mulcld 10045 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
15 subadd2 10270 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2))
1615bicomd 213 . . . . . . . 8 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥)))
177, 5, 14, 16syl3anc 1324 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥)))
18 2m1e1 11120 . . . . . . . . 9 (2 − 1) = 1
1918a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (2 − 1) = 1)
2019eqeq1d 2622 . . . . . . 7 (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2113, 17, 203bitrd 294 . . . . . 6 (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥)))
2211, 21mtbird 315 . . . . 5 (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1))
2322nrex 2997 . . . 4 ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)
2423intnan 959 . . 3 ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))
25 eqeq1 2624 . . . . 5 (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1)))
2625rexbidv 3048 . . . 4 (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)))
27 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
2826, 27elrab2 3360 . . 3 (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)))
2924, 28mtbir 313 . 2 ¬ 2 ∈ 𝑂
3029nelir 2897 1 2 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wnel 2894  wrex 2910  {crab 2913  (class class class)co 6635  cc 9919  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  cmin 10251   / cdiv 10669  2c2 11055  cz 11362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-n0 11278  df-z 11363
This theorem is referenced by:  oddinmgm  41580
  Copyright terms: Public domain W3C validator