Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nodd Structured version   Visualization version   GIF version

Theorem 2nodd 42340
Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
2nodd 2 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 2nodd
StepHypRef Expression
1 halfnz 11667 . . . . . . . . 9 ¬ (1 / 2) ∈ ℤ
2 eleq1 2827 . . . . . . . . 9 ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ))
31, 2mtbii 315 . . . . . . . 8 ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ)
43con2i 134 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥)
5 1cnd 10268 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
6 zcn 11594 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 2cnd 11305 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
8 2ne0 11325 . . . . . . . . 9 2 ≠ 0
98a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
105, 6, 7, 9divmul2d 11046 . . . . . . 7 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
114, 10mtbid 313 . . . . . 6 (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥))
12 eqcom 2767 . . . . . . . 8 (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)
1312a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2))
147, 6mulcld 10272 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
15 subadd2 10497 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2))
1615bicomd 213 . . . . . . . 8 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥)))
177, 5, 14, 16syl3anc 1477 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥)))
18 2m1e1 11347 . . . . . . . . 9 (2 − 1) = 1
1918a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (2 − 1) = 1)
2019eqeq1d 2762 . . . . . . 7 (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2113, 17, 203bitrd 294 . . . . . 6 (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥)))
2211, 21mtbird 314 . . . . 5 (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1))
2322nrex 3138 . . . 4 ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)
2423intnan 998 . . 3 ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))
25 eqeq1 2764 . . . . 5 (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1)))
2625rexbidv 3190 . . . 4 (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)))
27 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
2826, 27elrab2 3507 . . 3 (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)))
2924, 28mtbir 312 . 2 ¬ 2 ∈ 𝑂
3029nelir 3038 1 2 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wnel 3035  wrex 3051  {crab 3054  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  cmin 10478   / cdiv 10896  2c2 11282  cz 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590
This theorem is referenced by:  oddinmgm  42343
  Copyright terms: Public domain W3C validator