![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndf2 | Structured version Visualization version GIF version |
Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
2ndf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
Ref | Expression |
---|---|
2ndf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 2ndfval.p | . . . 4 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 2ndfval 17035 | . . 3 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
8 | fo2nd 7354 | . . . . . 6 ⊢ 2nd :V–onto→V | |
9 | fofun 6277 | . . . . . 6 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 2nd |
11 | fvex 6362 | . . . . . 6 ⊢ (Base‘𝑇) ∈ V | |
12 | 2, 11 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
13 | resfunexg 6643 | . . . . 5 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
14 | 10, 12, 13 | mp2an 710 | . . . 4 ⊢ (2nd ↾ 𝐵) ∈ V |
15 | 12, 12 | mpt2ex 7415 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
16 | 14, 15 | op2ndd 7344 | . . 3 ⊢ (𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
17 | 7, 16 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
18 | simprl 811 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
19 | simprr 813 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
20 | 18, 19 | oveq12d 6831 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) |
21 | 20 | reseq2d 5551 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆))) |
22 | 2ndf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
23 | 2ndf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
24 | ovex 6841 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
25 | resfunexg 6643 | . . . 4 ⊢ ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) | |
26 | 10, 24, 25 | mp2an 710 | . . 3 ⊢ (2nd ↾ (𝑅𝐻𝑆)) ∈ V |
27 | 26 | a1i 11 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) |
28 | 17, 21, 22, 23, 27 | ovmpt2d 6953 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 ↾ cres 5268 Fun wfun 6043 –onto→wfo 6047 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 2nd c2nd 7332 Basecbs 16059 Hom chom 16154 Catccat 16526 ×c cxpc 17009 2ndF c2ndf 17011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-hom 16168 df-cco 16169 df-xpc 17013 df-2ndf 17015 |
This theorem is referenced by: 2ndfcl 17039 prf2nd 17046 1st2ndprf 17047 uncf2 17078 curf2ndf 17088 yonedalem22 17119 |
Copyright terms: Public domain | W3C validator |