![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndf1 | Structured version Visualization version GIF version |
Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
Ref | Expression |
---|---|
2ndf1 | ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . . 5 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 2ndfval.p | . . . . 5 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 2ndfval 17006 | . . . 4 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
8 | fo2nd 7342 | . . . . . . 7 ⊢ 2nd :V–onto→V | |
9 | fofun 6265 | . . . . . . 7 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun 2nd |
11 | fvex 6350 | . . . . . . 7 ⊢ (Base‘𝑇) ∈ V | |
12 | 2, 11 | eqeltri 2823 | . . . . . 6 ⊢ 𝐵 ∈ V |
13 | resfunexg 6631 | . . . . . 6 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
14 | 10, 12, 13 | mp2an 710 | . . . . 5 ⊢ (2nd ↾ 𝐵) ∈ V |
15 | 12, 12 | mpt2ex 7403 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
16 | 14, 15 | op1std 7331 | . . . 4 ⊢ (𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 → (1st ‘𝑄) = (2nd ↾ 𝐵)) |
17 | 7, 16 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑄) = (2nd ↾ 𝐵)) |
18 | 17 | fveq1d 6342 | . 2 ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = ((2nd ↾ 𝐵)‘𝑅)) |
19 | 2ndf1.p | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
20 | fvres 6356 | . . 3 ⊢ (𝑅 ∈ 𝐵 → ((2nd ↾ 𝐵)‘𝑅) = (2nd ‘𝑅)) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝜑 → ((2nd ↾ 𝐵)‘𝑅) = (2nd ‘𝑅)) |
22 | 18, 21 | eqtrd 2782 | 1 ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 Vcvv 3328 〈cop 4315 ↾ cres 5256 Fun wfun 6031 –onto→wfo 6035 ‘cfv 6037 (class class class)co 6801 ↦ cmpt2 6803 1st c1st 7319 2nd c2nd 7320 Basecbs 16030 Hom chom 16125 Catccat 16497 ×c cxpc 16980 2ndF c2ndf 16982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-9 11249 df-n0 11456 df-z 11541 df-dec 11657 df-uz 11851 df-fz 12491 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-hom 16139 df-cco 16140 df-xpc 16984 df-2ndf 16986 |
This theorem is referenced by: prf2nd 17017 1st2ndprf 17018 uncf1 17048 uncf2 17049 curf2ndf 17059 yonedalem21 17085 yonedalem22 17090 |
Copyright terms: Public domain | W3C validator |