MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcomap Structured version   Visualization version   GIF version

Theorem 2ndcomap 21309
Description: A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
2ndcomap.2 𝑌 = 𝐾
2ndcomap.3 (𝜑𝐽 ∈ 2nd𝜔)
2ndcomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2ndcomap.6 (𝜑 → ran 𝐹 = 𝑌)
2ndcomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
2ndcomap (𝜑𝐾 ∈ 2nd𝜔)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝐾
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem 2ndcomap
Dummy variables 𝑘 𝑚 𝑡 𝑤 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndcomap.5 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 21093 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
43ad2antrr 762 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ Top)
5 simplll 813 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝜑)
6 bastg 20818 . . . . . . . . . 10 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
76ad2antlr 763 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ⊆ (topGen‘𝑏))
8 simprr 811 . . . . . . . . 9 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘𝑏) = 𝐽)
97, 8sseqtrd 3674 . . . . . . . 8 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏𝐽)
109sselda 3636 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → 𝑥𝐽)
11 2ndcomap.7 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
125, 10, 11syl2anc 694 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ 𝑥𝑏) → (𝐹𝑥) ∈ 𝐾)
13 eqid 2651 . . . . . 6 (𝑥𝑏 ↦ (𝐹𝑥)) = (𝑥𝑏 ↦ (𝐹𝑥))
1412, 13fmptd 6425 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏𝐾)
15 frn 6091 . . . . 5 ((𝑥𝑏 ↦ (𝐹𝑥)):𝑏𝐾 → ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾)
1614, 15syl 17 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾)
17 elunii 4473 . . . . . . . . . . 11 ((𝑧𝑘𝑘𝐾) → 𝑧 𝐾)
18 2ndcomap.2 . . . . . . . . . . 11 𝑌 = 𝐾
1917, 18syl6eleqr 2741 . . . . . . . . . 10 ((𝑧𝑘𝑘𝐾) → 𝑧𝑌)
2019ancoms 468 . . . . . . . . 9 ((𝑘𝐾𝑧𝑘) → 𝑧𝑌)
2120adantl 481 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧𝑌)
22 2ndcomap.6 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝑌)
2322ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ran 𝐹 = 𝑌)
2421, 23eleqtrrd 2733 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝑧 ∈ ran 𝐹)
25 eqid 2651 . . . . . . . . . . 11 𝐽 = 𝐽
2625, 18cnf 21098 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
271, 26syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽𝑌)
2827ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹: 𝐽𝑌)
29 ffn 6083 . . . . . . . 8 (𝐹: 𝐽𝑌𝐹 Fn 𝐽)
30 fvelrnb 6282 . . . . . . . 8 (𝐹 Fn 𝐽 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
3128, 29, 303syl 18 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑡 𝐽(𝐹𝑡) = 𝑧))
3224, 31mpbid 222 . . . . . 6 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑡 𝐽(𝐹𝑡) = 𝑧)
331ad3antrrr 766 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 ∈ (𝐽 Cn 𝐾))
34 simprll 819 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑘𝐾)
35 cnima 21117 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑘𝐾) → (𝐹𝑘) ∈ 𝐽)
3633, 34, 35syl2anc 694 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ 𝐽)
378adantr 480 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (topGen‘𝑏) = 𝐽)
3836, 37eleqtrrd 2733 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑘) ∈ (topGen‘𝑏))
39 simprrl 821 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 𝐽)
40 simprrr 822 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) = 𝑧)
41 simprlr 820 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑧𝑘)
4240, 41eqeltrd 2730 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝐹𝑡) ∈ 𝑘)
4328, 29syl 17 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → 𝐹 Fn 𝐽)
4443adantrr 753 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝐹 Fn 𝐽)
45 elpreima 6377 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4644, 45syl 17 . . . . . . . . . 10 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → (𝑡 ∈ (𝐹𝑘) ↔ (𝑡 𝐽 ∧ (𝐹𝑡) ∈ 𝑘)))
4739, 42, 46mpbir2and 977 . . . . . . . . 9 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → 𝑡 ∈ (𝐹𝑘))
48 tg2 20817 . . . . . . . . 9 (((𝐹𝑘) ∈ (topGen‘𝑏) ∧ 𝑡 ∈ (𝐹𝑘)) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
4938, 47, 48syl2anc 694 . . . . . . . 8 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑚𝑏 (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))
50 simprl 809 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚𝑏)
51 eqid 2651 . . . . . . . . . . 11 (𝐹𝑚) = (𝐹𝑚)
52 imaeq2 5497 . . . . . . . . . . . . 13 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5352eqeq2d 2661 . . . . . . . . . . . 12 (𝑥 = 𝑚 → ((𝐹𝑚) = (𝐹𝑥) ↔ (𝐹𝑚) = (𝐹𝑚)))
5453rspcev 3340 . . . . . . . . . . 11 ((𝑚𝑏 ∧ (𝐹𝑚) = (𝐹𝑚)) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5550, 51, 54sylancl 695 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥))
5644adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝐹 Fn 𝐽)
57 fnfun 6026 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐽 → Fun 𝐹)
5856, 57syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → Fun 𝐹)
59 simprrr 822 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ (𝐹𝑘))
60 funimass2 6010 . . . . . . . . . . . . 13 ((Fun 𝐹𝑚 ⊆ (𝐹𝑘)) → (𝐹𝑚) ⊆ 𝑘)
6158, 59, 60syl2anc 694 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ⊆ 𝑘)
62 vex 3234 . . . . . . . . . . . 12 𝑘 ∈ V
63 ssexg 4837 . . . . . . . . . . . 12 (((𝐹𝑚) ⊆ 𝑘𝑘 ∈ V) → (𝐹𝑚) ∈ V)
6461, 62, 63sylancl 695 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ V)
6513elrnmpt 5404 . . . . . . . . . . 11 ((𝐹𝑚) ∈ V → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6664, 65syl 17 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ↔ ∃𝑥𝑏 (𝐹𝑚) = (𝐹𝑥)))
6755, 66mpbird 247 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)))
6840adantr 480 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) = 𝑧)
69 simprrl 821 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑡𝑚)
70 cnvimass 5520 . . . . . . . . . . . . 13 (𝐹𝑘) ⊆ dom 𝐹
7159, 70syl6ss 3648 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑚 ⊆ dom 𝐹)
72 funfvima2 6533 . . . . . . . . . . . 12 ((Fun 𝐹𝑚 ⊆ dom 𝐹) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7358, 71, 72syl2anc 694 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝑡𝑚 → (𝐹𝑡) ∈ (𝐹𝑚)))
7469, 73mpd 15 . . . . . . . . . 10 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → (𝐹𝑡) ∈ (𝐹𝑚))
7568, 74eqeltrrd 2731 . . . . . . . . 9 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → 𝑧 ∈ (𝐹𝑚))
76 eleq2 2719 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑧𝑤𝑧 ∈ (𝐹𝑚)))
77 sseq1 3659 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → (𝑤𝑘 ↔ (𝐹𝑚) ⊆ 𝑘))
7876, 77anbi12d 747 . . . . . . . . . 10 (𝑤 = (𝐹𝑚) → ((𝑧𝑤𝑤𝑘) ↔ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)))
7978rspcev 3340 . . . . . . . . 9 (((𝐹𝑚) ∈ ran (𝑥𝑏 ↦ (𝐹𝑥)) ∧ (𝑧 ∈ (𝐹𝑚) ∧ (𝐹𝑚) ⊆ 𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8067, 75, 61, 79syl12anc 1364 . . . . . . . 8 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) ∧ (𝑚𝑏 ∧ (𝑡𝑚𝑚 ⊆ (𝐹𝑘)))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8149, 80rexlimddv 3064 . . . . . . 7 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ ((𝑘𝐾𝑧𝑘) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧))) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8281anassrs 681 . . . . . 6 (((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) ∧ (𝑡 𝐽 ∧ (𝐹𝑡) = 𝑧)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8332, 82rexlimddv 3064 . . . . 5 ((((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) ∧ (𝑘𝐾𝑧𝑘)) → ∃𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
8483ralrimivva 3000 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘))
85 basgen2 20841 . . . 4 ((𝐾 ∈ Top ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ⊆ 𝐾 ∧ ∀𝑘𝐾𝑧𝑘𝑤 ∈ ran (𝑥𝑏 ↦ (𝐹𝑥))(𝑧𝑤𝑤𝑘)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
864, 16, 84, 85syl3anc 1366 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) = 𝐾)
8786, 4eqeltrd 2730 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
88 tgclb 20822 . . . . 5 (ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ↔ (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ Top)
8987, 88sylibr 224 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases)
90 omelon 8581 . . . . . . 7 ω ∈ On
91 simprl 809 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ≼ ω)
92 ondomen 8898 . . . . . . 7 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
9390, 91, 92sylancr 696 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝑏 ∈ dom card)
94 ffn 6083 . . . . . . . 8 ((𝑥𝑏 ↦ (𝐹𝑥)):𝑏𝐾 → (𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏)
9514, 94syl 17 . . . . . . 7 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏)
96 dffn4 6159 . . . . . . 7 ((𝑥𝑏 ↦ (𝐹𝑥)) Fn 𝑏 ↔ (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
9795, 96sylib 208 . . . . . 6 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)))
98 fodomnum 8918 . . . . . 6 (𝑏 ∈ dom card → ((𝑥𝑏 ↦ (𝐹𝑥)):𝑏onto→ran (𝑥𝑏 ↦ (𝐹𝑥)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏))
9993, 97, 98sylc 65 . . . . 5 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏)
100 domtr 8050 . . . . 5 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
10199, 91, 100syl2anc 694 . . . 4 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω)
102 2ndci 21299 . . . 4 ((ran (𝑥𝑏 ↦ (𝐹𝑥)) ∈ TopBases ∧ ran (𝑥𝑏 ↦ (𝐹𝑥)) ≼ ω) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2nd𝜔)
10389, 101, 102syl2anc 694 . . 3 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → (topGen‘ran (𝑥𝑏 ↦ (𝐹𝑥))) ∈ 2nd𝜔)
10486, 103eqeltrrd 2731 . 2 (((𝜑𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → 𝐾 ∈ 2nd𝜔)
105 2ndcomap.3 . . 3 (𝜑𝐽 ∈ 2nd𝜔)
106 is2ndc 21297 . . 3 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
107105, 106sylib 208 . 2 (𝜑 → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
108104, 107r19.29a 3107 1 (𝜑𝐾 ∈ 2nd𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607   cuni 4468   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146  Oncon0 5761  Fun wfun 5920   Fn wfn 5921  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  cardccrd 8799  topGenctg 16145  Topctop 20746  TopBasesctb 20797   Cn ccn 21076  2nd𝜔c2ndc 21289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-card 8803  df-acn 8806  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-2ndc 21291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator