Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndc1stc Structured version   Visualization version   GIF version

Theorem 2ndc1stc 21302
 Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.)
Assertion
Ref Expression
2ndc1stc (𝐽 ∈ 2nd𝜔 → 𝐽 ∈ 1st𝜔)

Proof of Theorem 2ndc1stc
Dummy variables 𝑜 𝑏 𝑝 𝑞 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndctop 21298 . 2 (𝐽 ∈ 2nd𝜔 → 𝐽 ∈ Top)
2 is2ndc 21297 . . . 4 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
3 ssrab2 3720 . . . . . . . . . . 11 {𝑞𝑏𝑥𝑞} ⊆ 𝑏
4 bastg 20818 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → 𝑏 ⊆ (topGen‘𝑏))
543ad2ant1 1102 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ⊆ (topGen‘𝑏))
63, 5syl5ss 3647 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
7 fvex 6239 . . . . . . . . . . 11 (topGen‘𝑏) ∈ V
87elpw2 4858 . . . . . . . . . 10 ({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ↔ {𝑞𝑏𝑥𝑞} ⊆ (topGen‘𝑏))
96, 8sylibr 224 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏))
10 vex 3234 . . . . . . . . . . 11 𝑏 ∈ V
11 ssdomg 8043 . . . . . . . . . . 11 (𝑏 ∈ V → ({𝑞𝑏𝑥𝑞} ⊆ 𝑏 → {𝑞𝑏𝑥𝑞} ≼ 𝑏))
1210, 3, 11mp2 9 . . . . . . . . . 10 {𝑞𝑏𝑥𝑞} ≼ 𝑏
13 simp2 1082 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → 𝑏 ≼ ω)
14 domtr 8050 . . . . . . . . . 10 (({𝑞𝑏𝑥𝑞} ≼ 𝑏𝑏 ≼ ω) → {𝑞𝑏𝑥𝑞} ≼ ω)
1512, 13, 14sylancr 696 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → {𝑞𝑏𝑥𝑞} ≼ ω)
16 eltg2b 20811 . . . . . . . . . . . 12 (𝑏 ∈ TopBases → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
17163ad2ant1 1102 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) ↔ ∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜)))
18 elequ1 2037 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑡𝑥𝑡))
1918anbi1d 741 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦𝑡𝑡𝑜) ↔ (𝑥𝑡𝑡𝑜)))
2019rexbidv 3081 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑡𝑏 (𝑦𝑡𝑡𝑜) ↔ ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
2120rspccv 3337 . . . . . . . . . . . 12 (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑡𝑏 (𝑥𝑡𝑡𝑜)))
22 id 22 . . . . . . . . . . . . . . . . 17 ((𝑡𝑏𝑥𝑡) → (𝑡𝑏𝑥𝑡))
2322adantrr 753 . . . . . . . . . . . . . . . 16 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → (𝑡𝑏𝑥𝑡))
24 elequ2 2044 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑡 → (𝑥𝑞𝑥𝑡))
2524elrab 3396 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑞𝑏𝑥𝑞} ↔ (𝑡𝑏𝑥𝑡))
2623, 25sylibr 224 . . . . . . . . . . . . . . 15 ((𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜)) → 𝑡 ∈ {𝑞𝑏𝑥𝑞})
2726adantl 481 . . . . . . . . . . . . . 14 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → 𝑡 ∈ {𝑞𝑏𝑥𝑞})
28 simprr 811 . . . . . . . . . . . . . 14 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → (𝑥𝑡𝑡𝑜))
29 elequ2 2044 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑥𝑝𝑥𝑡))
30 sseq1 3659 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑡 → (𝑝𝑜𝑡𝑜))
3129, 30anbi12d 747 . . . . . . . . . . . . . . 15 (𝑝 = 𝑡 → ((𝑥𝑝𝑝𝑜) ↔ (𝑥𝑡𝑡𝑜)))
3231rspcev 3340 . . . . . . . . . . . . . 14 ((𝑡 ∈ {𝑞𝑏𝑥𝑞} ∧ (𝑥𝑡𝑡𝑜)) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3327, 28, 32syl2anc 694 . . . . . . . . . . . . 13 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) ∧ (𝑡𝑏 ∧ (𝑥𝑡𝑡𝑜))) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))
3433rexlimdvaa 3061 . . . . . . . . . . . 12 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∃𝑡𝑏 (𝑥𝑡𝑡𝑜) → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
3521, 34syl9r 78 . . . . . . . . . . 11 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (∀𝑦𝑜𝑡𝑏 (𝑦𝑡𝑡𝑜) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3617, 35sylbid 230 . . . . . . . . . 10 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → (𝑜 ∈ (topGen‘𝑏) → (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
3736ralrimiv 2994 . . . . . . . . 9 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
38 breq1 4688 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (𝑠 ≼ ω ↔ {𝑞𝑏𝑥𝑞} ≼ ω))
39 rexeq 3169 . . . . . . . . . . . . 13 (𝑠 = {𝑞𝑏𝑥𝑞} → (∃𝑝𝑠 (𝑥𝑝𝑝𝑜) ↔ ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))
4039imbi2d 329 . . . . . . . . . . . 12 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ (𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4140ralbidv 3015 . . . . . . . . . . 11 (𝑠 = {𝑞𝑏𝑥𝑞} → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜))))
4238, 41anbi12d 747 . . . . . . . . . 10 (𝑠 = {𝑞𝑏𝑥𝑞} → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))))
4342rspcev 3340 . . . . . . . . 9 (({𝑞𝑏𝑥𝑞} ∈ 𝒫 (topGen‘𝑏) ∧ ({𝑞𝑏𝑥𝑞} ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝 ∈ {𝑞𝑏𝑥𝑞} (𝑥𝑝𝑝𝑜)))) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
449, 15, 37, 43syl12anc 1364 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ∧ 𝑥 (topGen‘𝑏)) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
45443expia 1286 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
46 unieq 4476 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
4746eleq2d 2716 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (𝑥 (topGen‘𝑏) ↔ 𝑥 𝐽))
48 pweq 4194 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → 𝒫 (topGen‘𝑏) = 𝒫 𝐽)
49 raleq 3168 . . . . . . . . . 10 ((topGen‘𝑏) = 𝐽 → (∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)) ↔ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
5049anbi2d 740 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → ((𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ (𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5148, 50rexeqbidv 3183 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → (∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))) ↔ ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5247, 51imbi12d 333 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → ((𝑥 (topGen‘𝑏) → ∃𝑠 ∈ 𝒫 (topGen‘𝑏)(𝑠 ≼ ω ∧ ∀𝑜 ∈ (topGen‘𝑏)(𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))) ↔ (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5345, 52syl5ibcom 235 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5453expimpd 628 . . . . 5 (𝑏 ∈ TopBases → ((𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))))
5554rexlimiv 3056 . . . 4 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
562, 55sylbi 207 . . 3 (𝐽 ∈ 2nd𝜔 → (𝑥 𝐽 → ∃𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
5756ralrimiv 2994 . 2 (𝐽 ∈ 2nd𝜔 → ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜))))
58 eqid 2651 . . 3 𝐽 = 𝐽
5958is1stc2 21293 . 2 (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑠 ∈ 𝒫 𝐽(𝑠 ≼ ω ∧ ∀𝑜𝐽 (𝑥𝑜 → ∃𝑝𝑠 (𝑥𝑝𝑝𝑜)))))
601, 57, 59sylanbrc 699 1 (𝐽 ∈ 2nd𝜔 → 𝐽 ∈ 1st𝜔)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  {crab 2945  Vcvv 3231   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468   class class class wbr 4685  ‘cfv 5926  ωcom 7107   ≼ cdom 7995  topGenctg 16145  Topctop 20746  TopBasesctb 20797  1st𝜔c1stc 21288  2nd𝜔c2ndc 21289 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-dom 7999  df-topgen 16151  df-top 20747  df-bases 20798  df-1stc 21290  df-2ndc 21291 This theorem is referenced by:  dis1stc  21350
 Copyright terms: Public domain W3C validator