MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd2val Structured version   Visualization version   GIF version

Theorem 2nd2val 7343
Description: Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
2nd2val ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem 2nd2val
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5317 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩)
2 fveq2 6332 . . . . . 6 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩))
3 df-ov 6795 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩)
4 vex 3352 . . . . . . . 8 𝑤 ∈ V
5 vex 3352 . . . . . . . 8 𝑣 ∈ V
6 simpr 471 . . . . . . . . 9 ((𝑥 = 𝑤𝑦 = 𝑣) → 𝑦 = 𝑣)
7 mpt2v 6896 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑦) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
87eqcomi 2779 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑦)
96, 8, 5ovmpt2a 6937 . . . . . . . 8 ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = 𝑣)
104, 5, 9mp2an 664 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}𝑣) = 𝑣
113, 10eqtr3i 2794 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘⟨𝑤, 𝑣⟩) = 𝑣
122, 11syl6eq 2820 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = 𝑣)
134, 5op2ndd 7325 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → (2nd𝐴) = 𝑣)
1412, 13eqtr4d 2807 . . . 4 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
1514exlimivv 2011 . . 3 (∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
161, 15sylbi 207 . 2 (𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
17 vex 3352 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3352 . . . . . . . . . 10 𝑦 ∈ V
1917, 18pm3.2i 447 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑦 ∈ V)
20 ax6ev 2058 . . . . . . . . 9 𝑧 𝑧 = 𝑦
2119, 202th 254 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑦)
2221opabbii 4849 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑦}
23 df-xp 5255 . . . . . . 7 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
24 dmoprab 6887 . . . . . . 7 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑦}
2522, 23, 243eqtr4ri 2803 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (V × V)
2625eleq2i 2841 . . . . 5 (𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↔ 𝐴 ∈ (V × V))
27 ndmfv 6359 . . . . 5 𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ∅)
2826, 27sylnbir 320 . . . 4 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ∅)
29 rnsnn0 5742 . . . . . . . 8 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
3029biimpri 218 . . . . . . 7 (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
3130necon1bi 2970 . . . . . 6 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
3231unieqd 4582 . . . . 5 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
33 uni0 4599 . . . . 5 ∅ = ∅
3432, 33syl6eq 2820 . . . 4 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
3528, 34eqtr4d 2807 . . 3 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = ran {𝐴})
36 2ndval 7317 . . 3 (2nd𝐴) = ran {𝐴}
3735, 36syl6eqr 2822 . 2 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴))
3816, 37pm2.61i 176 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}‘𝐴) = (2nd𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1630  wex 1851  wcel 2144  wne 2942  Vcvv 3349  c0 4061  {csn 4314  cop 4320   cuni 4572  {copab 4844   × cxp 5247  dom cdm 5249  ran crn 5250  cfv 6031  (class class class)co 6792  {coprab 6793  cmpt2 6794  2nd c2nd 7313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-2nd 7315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator