![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version |
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11297 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 10201 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 10251 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 (class class class)co 6796 ℂcc 10140 ici 10144 · cmul 10147 2c2 11276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-i2m1 10210 ax-1ne0 10211 ax-rrecex 10214 ax-cnre 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-ov 6799 df-2 11285 |
This theorem is referenced by: imval2 14099 sinf 15060 sinneg 15082 efival 15088 sinadd 15100 dvmptim 23953 sincn 24418 sineq0 24494 sinasin 24837 efiatan2 24865 2efiatan 24866 tanatan 24867 sineq0ALT 39695 |
Copyright terms: Public domain | W3C validator |