![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mpt20 | Structured version Visualization version GIF version |
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.) |
Ref | Expression |
---|---|
2mpt20.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
2mpt20.u | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
Ref | Expression |
---|---|
2mpt20 | ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 508 | . 2 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) ↔ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷))) | |
2 | 2mpt20.o | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | |
3 | 2 | mpt2ndm0 6917 | . . . . 5 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = ∅) |
4 | 3 | oveqd 6707 | . . . 4 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆∅𝑇)) |
5 | 0ov 6722 | . . . 4 ⊢ (𝑆∅𝑇) = ∅ | |
6 | 4, 5 | syl6eq 2701 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
7 | notnotb 304 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ↔ ¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
8 | 2mpt20.u | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
10 | 9 | oveqd 6707 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇)) |
11 | eqid 2651 | . . . . . . 7 ⊢ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) | |
12 | 11 | mpt2ndm0 6917 | . . . . . 6 ⊢ (¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
14 | 10, 13 | eqtrd 2685 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
15 | 7, 14 | sylanbr 489 | . . 3 ⊢ ((¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
16 | 6, 15 | jaoi3 1031 | . 2 ⊢ ((¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
17 | 1, 16 | sylbi 207 | 1 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∅c0 3948 (class class class)co 6690 ↦ cmpt2 6692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-dm 5153 df-iota 5889 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: wwlksnon0 26804 |
Copyright terms: Public domain | W3C validator |