![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mos | Structured version Visualization version GIF version |
Description: Double "exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005.) |
Ref | Expression |
---|---|
2mos.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
2mos | ⊢ (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2mo 2677 | . 2 ⊢ (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
2 | nfv 1980 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
3 | 2mos.1 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
4 | 3 | sbiedv 2535 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝜑 ↔ 𝜓)) |
5 | 2, 4 | sbie 2533 | . . . . . 6 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜓) |
6 | 5 | anbi2i 732 | . . . . 5 ⊢ ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (𝜑 ∧ 𝜓)) |
7 | 6 | imbi1i 338 | . . . 4 ⊢ (((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
8 | 7 | 2albii 1885 | . . 3 ⊢ (∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
9 | 8 | 2albii 1885 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
10 | 1, 9 | bitri 264 | 1 ⊢ (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1618 ∃wex 1841 [wsb 2034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |