![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11282 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 11119 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 11272 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 4831 | 1 ⊢ 2 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4804 (class class class)co 6813 1c1 10129 + caddc 10131 < clt 10266 2c2 11262 3c3 11263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-2 11271 df-3 11272 |
This theorem is referenced by: 1lt3 11388 2lt4 11390 2lt6 11399 2lt7 11405 2lt8 11412 2lt9 11420 2lt10OLD 11429 3halfnz 11648 2lt10 11872 uzuzle23 11922 uz3m2nn 11924 fztpval 12595 expnass 13164 s4fv2 13842 f1oun2prg 13862 caucvgrlem 14602 cos01gt0 15120 3lcm2e6 15642 5prm 16017 11prm 16024 17prm 16026 23prm 16028 83prm 16032 317prm 16035 4001lem4 16053 plusgndxnmulrndx 16200 rngstr 16202 oppradd 18830 cnfldstr 19950 cnfldfun 19960 matplusg 20422 log2le1 24876 chtub 25136 bpos1 25207 bposlem6 25213 chto1ub 25364 dchrvmasumiflem1 25389 istrkg3ld 25559 tgcgr4 25625 axlowdimlem2 26022 axlowdimlem16 26036 axlowdimlem17 26037 axlowdim 26040 usgrexmpldifpr 26349 upgr3v3e3cycl 27332 konigsbergiedgw 27400 konigsberglem1 27404 konigsberglem2 27405 konigsberglem3 27406 ex-pss 27596 ex-res 27609 ex-fv 27611 ex-fl 27615 ex-mod 27617 prodfzo03 30990 cnndvlem1 32834 poimirlem9 33731 rabren3dioph 37881 jm2.20nn 38066 wallispilem4 40788 fourierdlem87 40913 smfmullem4 41507 257prm 41983 31prm 42022 nnsum3primes4 42186 nnsum3primesgbe 42190 nnsum3primesle9 42192 nnsum4primesodd 42194 nnsum4primesoddALTV 42195 tgoldbach 42215 tgoldbachOLD 42222 zlmodzxznm 42796 zlmodzxzldeplem 42797 |
Copyright terms: Public domain | W3C validator |