Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lnat Structured version   Visualization version   GIF version

Theorem 2lnat 35591
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2lnat.b 𝐵 = (Base‘𝐾)
2lnat.m = (meet‘𝐾)
2lnat.z 0 = (0.‘𝐾)
2lnat.a 𝐴 = (Atoms‘𝐾)
2lnat.n 𝑁 = (Lines‘𝐾)
2lnat.f 𝐹 = (pmap‘𝐾)
Assertion
Ref Expression
2lnat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2lnat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp11 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ HL)
2 hlatl 35168 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ AtLat)
4 hllat 35171 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
51, 4syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ Lat)
6 simp12 1247 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋𝐵)
7 simp13 1248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌𝐵)
8 2lnat.b . . . . . 6 𝐵 = (Base‘𝐾)
9 2lnat.m . . . . . 6 = (meet‘𝐾)
108, 9latmcl 17273 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
115, 6, 7, 10syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐵)
12 simp3r 1245 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ≠ 0 )
13 eqid 2760 . . . . 5 (le‘𝐾) = (le‘𝐾)
14 2lnat.z . . . . 5 0 = (0.‘𝐾)
15 2lnat.a . . . . 5 𝐴 = (Atoms‘𝐾)
168, 13, 14, 15atlex 35124 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ≠ 0 ) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
173, 11, 12, 16syl3anc 1477 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
18 simp13l 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑌)
19 simp11 1246 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵))
20 simp12l 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐹𝑋) ∈ 𝑁)
21 simp12r 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐹𝑌) ∈ 𝑁)
22 2lnat.n . . . . . . . . . . 11 𝑁 = (Lines‘𝐾)
23 2lnat.f . . . . . . . . . . 11 𝐹 = (pmap‘𝐾)
248, 13, 22, 23lncmp 35590 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
2519, 20, 21, 24syl12anc 1475 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
26 simp111 1387 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ HL)
2726, 4syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Lat)
28 simp112 1388 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝐵)
29 simp113 1389 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌𝐵)
308, 13, 9latleeqm1 17300 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3127, 28, 29, 30syl3anc 1477 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3225, 31bitr3d 270 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 = 𝑌 ↔ (𝑋 𝑌) = 𝑋))
3332necon3bid 2976 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋𝑌 ↔ (𝑋 𝑌) ≠ 𝑋))
3418, 33mpbid 222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ≠ 𝑋)
35 simp3 1133 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌))
368, 13, 9latmle1 17297 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
3727, 28, 29, 36syl3anc 1477 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌)(le‘𝐾)𝑋)
38 hlpos 35173 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3926, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Poset)
408, 15atbase 35097 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
41403ad2ant2 1129 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐵)
4227, 28, 29, 10syl3anc 1477 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝐵)
43 simp2 1132 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐴)
448, 13, 27, 41, 42, 28, 35, 37lattrd 17279 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)𝑋)
45 eqid 2760 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
468, 13, 45, 15, 22, 23lncvrat 35589 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) ∧ ((𝐹𝑋) ∈ 𝑁𝑝(le‘𝐾)𝑋)) → 𝑝( ⋖ ‘𝐾)𝑋)
4726, 28, 43, 20, 44, 46syl32anc 1485 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
488, 13, 45cvrnbtwn4 35087 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
4939, 41, 28, 42, 47, 48syl131anc 1490 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
5035, 37, 49mpbi2and 994 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋))
51 neor 3023 . . . . . . . 8 ((𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋) ↔ (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5250, 51sylib 208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5352necon1d 2954 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑋 𝑌) ≠ 𝑋𝑝 = (𝑋 𝑌)))
5434, 53mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 = (𝑋 𝑌))
55543exp 1113 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑝𝐴 → (𝑝(le‘𝐾)(𝑋 𝑌) → 𝑝 = (𝑋 𝑌))))
5655reximdvai 3153 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌)))
5717, 56mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
58 risset 3200 . 2 ((𝑋 𝑌) ∈ 𝐴 ↔ ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
5957, 58sylibr 224 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  Posetcpo 17161  meetcmee 17166  0.cp0 17258  Latclat 17266  ccvr 35070  Atomscatm 35071  AtLatcal 35072  HLchlt 35158  Linesclines 35301  pmapcpmap 35304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-lines 35308  df-pmap 35311
This theorem is referenced by:  cdleme3h  36043  cdleme7ga  36056
  Copyright terms: Public domain W3C validator