Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjaN Structured version   Visualization version   GIF version

Theorem 2llnjaN 35170
Description: The join of two different lattice lines in a lattice plane equals the plane (version of 2llnjN 35171 in terms of atoms). (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnja.l = (le‘𝐾)
2llnja.j = (join‘𝐾)
2llnja.a 𝐴 = (Atoms‘𝐾)
2llnja.n 𝑁 = (LLines‘𝐾)
2llnja.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjaN ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) = 𝑊)

Proof of Theorem 2llnjaN
StepHypRef Expression
1 eqid 2651 . 2 (Base‘𝐾) = (Base‘𝐾)
2 2llnja.l . 2 = (le‘𝐾)
3 simpl1l 1132 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝐾 ∈ HL)
4 hllat 34968 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝐾 ∈ Lat)
6 simpl21 1159 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑄𝐴)
7 simpl22 1160 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑅𝐴)
8 2llnja.j . . . . 5 = (join‘𝐾)
9 2llnja.a . . . . 5 𝐴 = (Atoms‘𝐾)
101, 8, 9hlatjcl 34971 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
113, 6, 7, 10syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑄 𝑅) ∈ (Base‘𝐾))
12 simpl31 1162 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑆𝐴)
13 simpl32 1163 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑇𝐴)
141, 8, 9hlatjcl 34971 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
153, 12, 13, 14syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 𝑇) ∈ (Base‘𝐾))
161, 8latjcl 17098 . . 3 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾))
175, 11, 15, 16syl3anc 1366 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾))
18 simpl1r 1133 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑊𝑃)
19 2llnja.p . . . 4 𝑃 = (LPlanes‘𝐾)
201, 19lplnbase 35138 . . 3 (𝑊𝑃𝑊 ∈ (Base‘𝐾))
2118, 20syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑊 ∈ (Base‘𝐾))
22 simpr1 1087 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑄 𝑅) 𝑊)
23 simpr2 1088 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 𝑇) 𝑊)
241, 2, 8latjle12 17109 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊) ↔ ((𝑄 𝑅) (𝑆 𝑇)) 𝑊))
255, 11, 15, 21, 24syl13anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊) ↔ ((𝑄 𝑅) (𝑆 𝑇)) 𝑊))
2622, 23, 25mpbi2and 976 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) 𝑊)
271, 9atbase 34894 . . . . . . . . . 10 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
2813, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑇 ∈ (Base‘𝐾))
291, 8latjcl 17098 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑇) ∈ (Base‘𝐾))
305, 11, 28, 29syl3anc 1366 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑇) ∈ (Base‘𝐾))
311, 9atbase 34894 . . . . . . . . . . 11 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3212, 31syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑆 ∈ (Base‘𝐾))
331, 2, 8latlej2 17108 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 (𝑆 𝑇))
345, 32, 28, 33syl3anc 1366 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑇 (𝑆 𝑇))
351, 2, 8latjlej2 17113 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑇 (𝑆 𝑇) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇))))
365, 28, 15, 11, 35syl13anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑇 (𝑆 𝑇) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇))))
3734, 36mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇)))
381, 2, 5, 30, 17, 21, 37, 26lattrd 17105 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑇) 𝑊)
39383adant3 1101 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) 𝑊)
40 simp11l 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝐾 ∈ HL)
41 simp121 1213 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑄𝐴)
42 simp122 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑅𝐴)
43 simp132 1217 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑇𝐴)
44 simp123 1215 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑄𝑅)
45 simp23 1116 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → (𝑄 𝑅) ≠ (𝑆 𝑇))
46 simpl3 1086 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → 𝑆 (𝑄 𝑅))
47 simpr 476 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → 𝑇 (𝑄 𝑅))
481, 2, 8latjle12 17109 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
495, 32, 28, 11, 48syl13anc 1368 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
50493adant3 1101 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
5150adantr 480 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑆 (𝑄 𝑅) ∧ 𝑇 (𝑄 𝑅)) ↔ (𝑆 𝑇) (𝑄 𝑅)))
5246, 47, 51mpbi2and 976 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → (𝑆 𝑇) (𝑄 𝑅))
53 simpl3 1086 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆𝐴𝑇𝐴𝑆𝑇))
542, 8, 9ps-1 35081 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇) ∧ (𝑄𝐴𝑅𝐴)) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
553, 53, 6, 7, 54syl112anc 1370 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
56553adant3 1101 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
5756adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑆 𝑇) (𝑄 𝑅) ↔ (𝑆 𝑇) = (𝑄 𝑅)))
5852, 57mpbid 222 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → (𝑆 𝑇) = (𝑄 𝑅))
5958eqcomd 2657 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) ∧ 𝑇 (𝑄 𝑅)) → (𝑄 𝑅) = (𝑆 𝑇))
6059ex 449 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → (𝑇 (𝑄 𝑅) → (𝑄 𝑅) = (𝑆 𝑇)))
6160necon3ad 2836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) ≠ (𝑆 𝑇) → ¬ 𝑇 (𝑄 𝑅)))
6245, 61mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ¬ 𝑇 (𝑄 𝑅))
632, 8, 9, 19lplni2 35141 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑇𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑇) ∈ 𝑃)
6440, 41, 42, 43, 44, 62, 63syl132anc 1384 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) ∈ 𝑃)
65 simp11r 1193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑊𝑃)
662, 19lplncmp 35166 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑇) ∈ 𝑃𝑊𝑃) → (((𝑄 𝑅) 𝑇) 𝑊 ↔ ((𝑄 𝑅) 𝑇) = 𝑊))
6740, 64, 65, 66syl3anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → (((𝑄 𝑅) 𝑇) 𝑊 ↔ ((𝑄 𝑅) 𝑇) = 𝑊))
6839, 67mpbid 222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) = 𝑊)
69373adant3 1101 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑇) ((𝑄 𝑅) (𝑆 𝑇)))
7068, 69eqbrtrrd 4709 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ 𝑆 (𝑄 𝑅)) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇)))
71703expia 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 (𝑄 𝑅) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇))))
721, 8latjcl 17098 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
735, 11, 32, 72syl3anc 1366 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑆) ∈ (Base‘𝐾))
741, 2, 8latlej1 17107 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑇))
755, 32, 28, 74syl3anc 1366 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑆 (𝑆 𝑇))
761, 2, 8latjlej2 17113 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑆 (𝑆 𝑇) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇))))
775, 32, 15, 11, 76syl13anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (𝑆 (𝑆 𝑇) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇))))
7875, 77mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇)))
791, 2, 5, 73, 17, 21, 78, 26lattrd 17105 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) 𝑆) 𝑊)
80793adant3 1101 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) 𝑊)
81 simp11l 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝐾 ∈ HL)
82 simp121 1213 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑄𝐴)
83 simp122 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑅𝐴)
84 simp131 1216 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑆𝐴)
85 simp123 1215 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑄𝑅)
86 simp3 1083 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ¬ 𝑆 (𝑄 𝑅))
872, 8, 9, 19lplni2 35141 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
8881, 82, 83, 84, 85, 86, 87syl132anc 1384 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
89 simp11r 1193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑊𝑃)
902, 19lplncmp 35166 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑄 𝑅) 𝑆) ∈ 𝑃𝑊𝑃) → (((𝑄 𝑅) 𝑆) 𝑊 ↔ ((𝑄 𝑅) 𝑆) = 𝑊))
9181, 88, 89, 90syl3anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → (((𝑄 𝑅) 𝑆) 𝑊 ↔ ((𝑄 𝑅) 𝑆) = 𝑊))
9280, 91mpbid 222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) = 𝑊)
93783adant3 1101 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ((𝑄 𝑅) (𝑆 𝑇)))
9492, 93eqbrtrrd 4709 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇)) ∧ ¬ 𝑆 (𝑄 𝑅)) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇)))
95943expia 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → (¬ 𝑆 (𝑄 𝑅) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇))))
9671, 95pm2.61d 170 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → 𝑊 ((𝑄 𝑅) (𝑆 𝑇)))
971, 2, 5, 17, 21, 26, 96latasymd 17104 1 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  Latclat 17092  Atomscatm 34868  HLchlt 34955  LLinesclln 35095  LPlanesclpl 35096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103
This theorem is referenced by:  2llnjN  35171
  Copyright terms: Public domain W3C validator