MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem3 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem3 25184
Description: Lemma 3 for 2lgsoddprm 25186. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 25097 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2 eleq1 2718 . . . . 5 ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
32eqcoms 2659 . . . 4 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
4 elun 3786 . . . . . 6 (𝑅 ∈ ({1, 7} ∪ {3, 5}) ↔ (𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}))
5 elpri 4230 . . . . . . . 8 (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5))
6 oveq1 6697 . . . . . . . . . . . . . 14 (𝑅 = 3 → (𝑅↑2) = (3↑2))
76oveq1d 6705 . . . . . . . . . . . . 13 (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) − 1))
87oveq1d 6705 . . . . . . . . . . . 12 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2) − 1) / 8))
9 2lgsoddprmlem3b 25181 . . . . . . . . . . . 12 (((3↑2) − 1) / 8) = 1
108, 9syl6eq 2701 . . . . . . . . . . 11 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = 1)
1110breq2d 4697 . . . . . . . . . 10 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 1))
12 n2dvds1 15151 . . . . . . . . . . 11 ¬ 2 ∥ 1
1312pm2.21i 116 . . . . . . . . . 10 (2 ∥ 1 → 𝑅 ∈ {1, 7})
1411, 13syl6bi 243 . . . . . . . . 9 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
15 oveq1 6697 . . . . . . . . . . . . . 14 (𝑅 = 5 → (𝑅↑2) = (5↑2))
1615oveq1d 6705 . . . . . . . . . . . . 13 (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) − 1))
1716oveq1d 6705 . . . . . . . . . . . 12 (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2) − 1) / 8))
1817breq2d 4697 . . . . . . . . . . 11 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((5↑2) − 1) / 8)))
19 2lgsoddprmlem3c 25182 . . . . . . . . . . . 12 (((5↑2) − 1) / 8) = 3
2019breq2i 4693 . . . . . . . . . . 11 (2 ∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3)
2118, 20syl6bb 276 . . . . . . . . . 10 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 3))
22 n2dvds3 15154 . . . . . . . . . . 11 ¬ 2 ∥ 3
2322pm2.21i 116 . . . . . . . . . 10 (2 ∥ 3 → 𝑅 ∈ {1, 7})
2421, 23syl6bi 243 . . . . . . . . 9 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2514, 24jaoi 393 . . . . . . . 8 ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
265, 25syl 17 . . . . . . 7 (𝑅 ∈ {3, 5} → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2726jao1i 842 . . . . . 6 ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
284, 27sylbi 207 . . . . 5 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
29 elpri 4230 . . . . . 6 (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7))
30 z0even 15150 . . . . . . . 8 2 ∥ 0
31 oveq1 6697 . . . . . . . . . . 11 (𝑅 = 1 → (𝑅↑2) = (1↑2))
3231oveq1d 6705 . . . . . . . . . 10 (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) − 1))
3332oveq1d 6705 . . . . . . . . 9 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2) − 1) / 8))
34 2lgsoddprmlem3a 25180 . . . . . . . . 9 (((1↑2) − 1) / 8) = 0
3533, 34syl6eq 2701 . . . . . . . 8 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = 0)
3630, 35syl5breqr 4723 . . . . . . 7 (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) / 8))
37 2z 11447 . . . . . . . . 9 2 ∈ ℤ
38 3z 11448 . . . . . . . . 9 3 ∈ ℤ
39 dvdsmul1 15050 . . . . . . . . 9 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 · 3))
4037, 38, 39mp2an 708 . . . . . . . 8 2 ∥ (2 · 3)
41 oveq1 6697 . . . . . . . . . . 11 (𝑅 = 7 → (𝑅↑2) = (7↑2))
4241oveq1d 6705 . . . . . . . . . 10 (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) − 1))
4342oveq1d 6705 . . . . . . . . 9 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2) − 1) / 8))
44 2lgsoddprmlem3d 25183 . . . . . . . . 9 (((7↑2) − 1) / 8) = (2 · 3)
4543, 44syl6eq 2701 . . . . . . . 8 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 · 3))
4640, 45syl5breqr 4723 . . . . . . 7 (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) / 8))
4736, 46jaoi 393 . . . . . 6 ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8))
4829, 47syl 17 . . . . 5 (𝑅 ∈ {1, 7} → 2 ∥ (((𝑅↑2) − 1) / 8))
4928, 48impbid1 215 . . . 4 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
503, 49syl6bi 243 . . 3 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
511, 50syl5com 31 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
52513impia 1280 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  cun 3605  {cpr 4212   class class class wbr 4685  (class class class)co 6690  0cc0 9974  1c1 9975   · cmul 9979  cmin 10304   / cdiv 10722  2c2 11108  3c3 11109  5c5 11111  7c7 11113  8c8 11114  cz 11415   mod cmo 12708  cexp 12900  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-dvds 15028
This theorem is referenced by:  2lgsoddprmlem4  25185
  Copyright terms: Public domain W3C validator