![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for 2lgs 25352: special case of 2lgs 25352 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
Ref | Expression |
---|---|
2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgs2 25350 | . . 3 ⊢ (2 /L 2) = 0 | |
2 | 1 | eqeq1i 2775 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
3 | 0ne1 11289 | . . . 4 ⊢ 0 ≠ 1 | |
4 | 3 | neii 2944 | . . 3 ⊢ ¬ 0 = 1 |
5 | 1ne2 11441 | . . . . 5 ⊢ 1 ≠ 2 | |
6 | 5 | nesymi 2999 | . . . 4 ⊢ ¬ 2 = 1 |
7 | 2re 11291 | . . . . . 6 ⊢ 2 ∈ ℝ | |
8 | 2lt7 11414 | . . . . . 6 ⊢ 2 < 7 | |
9 | 7, 8 | ltneii 10351 | . . . . 5 ⊢ 2 ≠ 7 |
10 | 9 | neii 2944 | . . . 4 ⊢ ¬ 2 = 7 |
11 | 6, 10 | pm3.2ni 960 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
12 | 4, 11 | 2false 364 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
13 | 8nn 11392 | . . . . . 6 ⊢ 8 ∈ ℕ | |
14 | nnrp 12044 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
16 | 0le2 11312 | . . . . 5 ⊢ 0 ≤ 2 | |
17 | 2lt8 11421 | . . . . 5 ⊢ 2 < 8 | |
18 | modid 12902 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
19 | 7, 15, 16, 17, 18 | mp4an 665 | . . . 4 ⊢ (2 mod 8) = 2 |
20 | 19 | eleq1i 2840 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
21 | 2ex 11293 | . . . 4 ⊢ 2 ∈ V | |
22 | 21 | elpr 4336 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
23 | 20, 22 | bitr2i 265 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
24 | 2, 12, 23 | 3bitri 286 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 826 = wceq 1630 ∈ wcel 2144 {cpr 4316 class class class wbr 4784 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 < clt 10275 ≤ cle 10276 ℕcn 11221 2c2 11271 7c7 11276 8c8 11277 ℝ+crp 12034 mod cmo 12875 /L clgs 25239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-n0 11494 df-xnn0 11565 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-dvds 15189 df-gcd 15424 df-prm 15592 df-phi 15677 df-pc 15748 df-lgs 25240 |
This theorem is referenced by: 2lgs 25352 |
Copyright terms: Public domain | W3C validator |