Step | Hyp | Ref
| Expression |
1 | | 2lgslem1b.f |
. . . 4
⊢ 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2)) |
2 | | elfzelz 12380 |
. . . . . . 7
⊢ (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ) |
3 | | 2lgslem1b.i |
. . . . . . 7
⊢ 𝐼 = (𝐴...𝐵) |
4 | 2, 3 | eleq2s 2748 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → 𝑗 ∈ ℤ) |
5 | | 2z 11447 |
. . . . . . 7
⊢ 2 ∈
ℤ |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → 2 ∈ ℤ) |
7 | 4, 6 | zmulcld 11526 |
. . . . 5
⊢ (𝑗 ∈ 𝐼 → (𝑗 · 2) ∈ ℤ) |
8 | | id 22 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → 𝑗 ∈ 𝐼) |
9 | | oveq1 6697 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2)) |
10 | 9 | eqeq2d 2661 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2))) |
11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝑗 ∈ 𝐼 ∧ 𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2))) |
12 | | eqidd 2652 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → (𝑗 · 2) = (𝑗 · 2)) |
13 | 8, 11, 12 | rspcedvd 3348 |
. . . . 5
⊢ (𝑗 ∈ 𝐼 → ∃𝑖 ∈ 𝐼 (𝑗 · 2) = (𝑖 · 2)) |
14 | | eqeq1 2655 |
. . . . . . 7
⊢ (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2))) |
15 | 14 | rexbidv 3081 |
. . . . . 6
⊢ (𝑥 = (𝑗 · 2) → (∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ 𝐼 (𝑗 · 2) = (𝑖 · 2))) |
16 | 15 | elrab 3396 |
. . . . 5
⊢ ((𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣
∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ↔ ((𝑗 · 2) ∈ ℤ ∧
∃𝑖 ∈ 𝐼 (𝑗 · 2) = (𝑖 · 2))) |
17 | 7, 13, 16 | sylanbrc 699 |
. . . 4
⊢ (𝑗 ∈ 𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)}) |
18 | 1, 17 | fmpti 6423 |
. . 3
⊢ 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |
19 | 1 | a1i 11 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2))) |
20 | | oveq1 6697 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2)) |
21 | 20 | adantl 481 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) ∧ 𝑗 = 𝑦) → (𝑗 · 2) = (𝑦 · 2)) |
22 | | simpl 472 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
23 | | ovexd 6720 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝑦 · 2) ∈ V) |
24 | 19, 21, 22, 23 | fvmptd 6327 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑦) = (𝑦 · 2)) |
25 | | oveq1 6697 |
. . . . . . . 8
⊢ (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2)) |
26 | 25 | adantl 481 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) ∧ 𝑗 = 𝑧) → (𝑗 · 2) = (𝑧 · 2)) |
27 | | simpr 476 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑧 ∈ 𝐼) |
28 | | ovexd 6720 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝑧 · 2) ∈ V) |
29 | 19, 26, 27, 28 | fvmptd 6327 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) = (𝑧 · 2)) |
30 | 24, 29 | eqeq12d 2666 |
. . . . 5
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝑦 · 2) = (𝑧 · 2))) |
31 | | elfzelz 12380 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ) |
32 | 31, 3 | eleq2s 2748 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐼 → 𝑦 ∈ ℤ) |
33 | 32 | zcnd 11521 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐼 → 𝑦 ∈ ℂ) |
34 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑦 ∈ ℂ) |
35 | | elfzelz 12380 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ) |
36 | 35, 3 | eleq2s 2748 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐼 → 𝑧 ∈ ℤ) |
37 | 36 | zcnd 11521 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐼 → 𝑧 ∈ ℂ) |
38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑧 ∈ ℂ) |
39 | | 2cnd 11131 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 2 ∈ ℂ) |
40 | | 2ne0 11151 |
. . . . . . . 8
⊢ 2 ≠
0 |
41 | 40 | a1i 11 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 2 ≠ 0) |
42 | 34, 38, 39, 41 | mulcan2d 10699 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧)) |
43 | 42 | biimpd 219 |
. . . . 5
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧)) |
44 | 30, 43 | sylbid 230 |
. . . 4
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
45 | 44 | rgen2 3004 |
. . 3
⊢
∀𝑦 ∈
𝐼 ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧) |
46 | | dff13 6552 |
. . 3
⊢ (𝐹:𝐼–1-1→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
47 | 18, 45, 46 | mpbir2an 975 |
. 2
⊢ 𝐹:𝐼–1-1→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |
48 | | oveq1 6697 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2)) |
49 | 48 | eqeq2d 2661 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2))) |
50 | 49 | cbvrexv 3202 |
. . . . 5
⊢
(∃𝑗 ∈
𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)) |
51 | | elfzelz 12380 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ) |
52 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ) |
53 | 51, 52 | zmulcld 11526 |
. . . . . . . . 9
⊢ (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ) |
54 | 53, 3 | eleq2s 2748 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝐼 → (𝑖 · 2) ∈ ℤ) |
55 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈
ℤ)) |
56 | 54, 55 | syl5ibrcom 237 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)) |
57 | 56 | rexlimiv 3056 |
. . . . . 6
⊢
(∃𝑖 ∈
𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ) |
58 | 57 | pm4.71ri 666 |
. . . . 5
⊢
(∃𝑖 ∈
𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))) |
59 | 50, 58 | bitri 264 |
. . . 4
⊢
(∃𝑗 ∈
𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))) |
60 | 59 | abbii 2768 |
. . 3
⊢ {𝑥 ∣ ∃𝑗 ∈ 𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))} |
61 | 1 | rnmpt 5403 |
. . 3
⊢ ran 𝐹 = {𝑥 ∣ ∃𝑗 ∈ 𝐼 𝑥 = (𝑗 · 2)} |
62 | | df-rab 2950 |
. . 3
⊢ {𝑥 ∈ ℤ ∣
∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))} |
63 | 60, 61, 62 | 3eqtr4i 2683 |
. 2
⊢ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |
64 | | dff1o5 6184 |
. 2
⊢ (𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼–1-1→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)})) |
65 | 47, 63, 64 | mpbir2an 975 |
1
⊢ 𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |