MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a2 Structured version   Visualization version   GIF version

Theorem 2lgslem1a2 25336
Description: Lemma 2 for 2lgslem1a 25337. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))

Proof of Theorem 2lgslem1a2
StepHypRef Expression
1 zre 11588 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21rehalfcld 11486 . . . 4 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ)
32adantr 466 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ)
4 id 22 . . . . . 6 (𝐼 ∈ ℤ → 𝐼 ∈ ℤ)
5 2z 11616 . . . . . . 7 2 ∈ ℤ
65a1i 11 . . . . . 6 (𝐼 ∈ ℤ → 2 ∈ ℤ)
74, 6zmulcld 11695 . . . . 5 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ)
87zred 11689 . . . 4 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ)
98adantl 467 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ)
10 2re 11296 . . . . 5 2 ∈ ℝ
11 2pos 11318 . . . . 5 0 < 2
1210, 11pm3.2i 456 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
1312a1i 11 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
14 ltdiv1 11093 . . 3 (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
153, 9, 13, 14syl3anc 1476 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
16 zcn 11589 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716adantr 466 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ)
18 2cnne0 11449 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1918a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
20 divdiv1 10942 . . . . 5 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2117, 19, 19, 20syl3anc 1476 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
22 2t2e4 11384 . . . . 5 (2 · 2) = 4
2322oveq2i 6807 . . . 4 (𝑁 / (2 · 2)) = (𝑁 / 4)
2421, 23syl6eq 2821 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4))
25 zcn 11589 . . . . 5 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
2625adantl 467 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ)
27 2cnd 11299 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 11319 . . . . 5 2 ≠ 0
2928a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan4d 11013 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼)
3124, 30breq12d 4800 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼))
32 4re 11303 . . . . 5 4 ∈ ℝ
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℝ)
34 4ne0 11323 . . . . 5 4 ≠ 0
3534a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ≠ 0)
361, 33, 35redivcld 11059 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
37 fllt 12815 . . 3 (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3836, 37sylan 569 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3915, 31, 383bitrrd 295 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142   · cmul 10147   < clt 10280   / cdiv 10890  2c2 11276  4c4 11278  cz 11584  cfl 12799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-n0 11500  df-z 11585  df-uz 11894  df-fl 12801
This theorem is referenced by:  2lgslem1a  25337
  Copyright terms: Public domain W3C validator