![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version |
Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp8 | ⊢ (2↑8) = ;;256 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 11510 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 11512 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2 | nn0cni 11505 | . . 3 ⊢ 4 ∈ ℂ |
4 | 2cn 11292 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4t2e8 11382 | . . 3 ⊢ (4 · 2) = 8 | |
6 | 3, 4, 5 | mulcomli 10248 | . 2 ⊢ (2 · 4) = 8 |
7 | 2exp4 16000 | . 2 ⊢ (2↑4) = ;16 | |
8 | 1nn0 11509 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 6nn0 11514 | . . . 4 ⊢ 6 ∈ ℕ0 | |
10 | 8, 9 | deccl 11713 | . . 3 ⊢ ;16 ∈ ℕ0 |
11 | eqid 2770 | . . 3 ⊢ ;16 = ;16 | |
12 | 9nn0 11517 | . . 3 ⊢ 9 ∈ ℕ0 | |
13 | 10 | nn0cni 11505 | . . . . 5 ⊢ ;16 ∈ ℂ |
14 | 13 | mulid1i 10243 | . . . 4 ⊢ (;16 · 1) = ;16 |
15 | 1p1e2 11335 | . . . 4 ⊢ (1 + 1) = 2 | |
16 | 5nn0 11513 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 9cn 11309 | . . . . 5 ⊢ 9 ∈ ℂ | |
18 | 6cn 11303 | . . . . 5 ⊢ 6 ∈ ℂ | |
19 | 9p6e15 11824 | . . . . 5 ⊢ (9 + 6) = ;15 | |
20 | 17, 18, 19 | addcomli 10429 | . . . 4 ⊢ (6 + 9) = ;15 |
21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 11780 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
22 | 3nn0 11511 | . . . 4 ⊢ 3 ∈ ℕ0 | |
23 | 18 | mulid2i 10244 | . . . . . 6 ⊢ (1 · 6) = 6 |
24 | 23 | oveq1i 6802 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
25 | 6p3e9 11371 | . . . . 5 ⊢ (6 + 3) = 9 | |
26 | 24, 25 | eqtri 2792 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
27 | 6t6e36 11846 | . . . 4 ⊢ (6 · 6) = ;36 | |
28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 11787 | . . 3 ⊢ (;16 · 6) = ;96 |
29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 11789 | . 2 ⊢ (;16 · ;16) = ;;256 |
30 | 1, 2, 6, 7, 29 | numexp2x 15989 | 1 ⊢ (2↑8) = ;;256 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 (class class class)co 6792 1c1 10138 + caddc 10140 · cmul 10142 2c2 11271 3c3 11272 4c4 11273 5c5 11274 6c6 11275 8c8 11277 9c9 11278 ;cdc 11694 ↑cexp 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-seq 13008 df-exp 13067 |
This theorem is referenced by: 2exp16 16003 2503lem1 16050 quart1lem 24802 quart1 24803 fmtno3 41981 fmtno4sqrt 42001 2exp11 42035 |
Copyright terms: Public domain | W3C validator |