![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1801. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1886 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
3 | 2 | eximdv 1886 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: 2eu6 2587 cgsex2g 3270 cgsex4g 3271 spc2egv 3326 spc3egv 3328 relop 5305 elres 5470 en3 8238 en4 8239 addsrpr 9934 mulsrpr 9935 hash2prde 13290 pmtrrn2 17926 umgredg 26078 umgr2wlkon 26915 fundmpss 31790 pellexlem5 37714 ax6e2eq 39090 fnchoice 39502 fzisoeu 39828 stoweidlem35 40570 stoweidlem60 40595 |
Copyright terms: Public domain | W3C validator |