![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1814 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1814 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: 3exbii 1816 3exdistr 1926 eeeanv 2219 ee4anv 2220 cbvex4v 2325 2sb5rf 2479 sbel2x 2487 2exsb 2497 2mo2 2579 rexcomf 3126 reean 3135 ceqsex3v 3277 ceqsex4v 3278 ceqsex8v 3280 vtocl3 3293 copsexg 4985 opelopabsbALT 5013 opabn0 5035 elxp2 5166 rabxp 5188 elxp3 5203 elvv 5211 elvvv 5212 copsex2gb 5263 elcnv2 5332 cnvuni 5341 xpdifid 5597 coass 5692 fununi 6002 dfmpt3 6052 tpres 6507 dfoprab2 6743 dmoprab 6783 rnoprab 6785 mpt2mptx 6793 resoprab 6798 elrnmpt2res 6816 ov3 6839 ov6g 6840 uniuni 7013 oprabex3 7199 wfrlem4 7463 oeeu 7728 xpassen 8095 zorn2lem6 9361 ltresr 9999 axaddf 10004 axmulf 10005 hashfun 13262 hash2prb 13292 5oalem7 28647 mpt2mptxf 29605 eulerpartlemgvv 30566 bnj600 31115 bnj916 31129 bnj983 31147 bnj986 31150 bnj996 31151 bnj1021 31160 elima4 31803 brtxp2 32113 brpprod3a 32118 brpprod3b 32119 elfuns 32147 brcart 32164 brimg 32169 brapply 32170 brsuccf 32173 brrestrict 32181 dfrdg4 32183 ellines 32384 bj-cbvex4vv 32868 itg2addnclem3 33593 brxrn2 34277 dfxrn2 34278 ecxrn 34289 inxpxrn 34293 rnxrn 34296 dalem20 35297 dvhopellsm 36723 diblsmopel 36777 pm11.52 38903 2exanali 38904 pm11.6 38909 pm11.7 38913 opelopab4 39084 stoweidlem35 40570 mpt2mptx2 42438 |
Copyright terms: Public domain | W3C validator |