![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ex | Structured version Visualization version GIF version |
Description: 2 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2ex | ⊢ 2 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11303 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | elexi 3353 | 1 ⊢ 2 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 Vcvv 3340 ℂcc 10146 2c2 11282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-2 11291 |
This theorem is referenced by: fzprval 12614 fztpval 12615 funcnvs3 13879 funcnvs4 13880 wrd3tpop 13912 wrdl3s3 13926 pmtrprfval 18127 m2detleiblem3 20657 m2detleiblem4 20658 iblcnlem1 23773 gausslemma2dlem4 25314 2lgslem4 25351 selberglem1 25454 axlowdimlem4 26045 2wlkdlem4 27069 2pthdlem1 27071 umgrwwlks2on 27099 3wlkdlem4 27335 3wlkdlem5 27336 3pthdlem1 27337 3wlkdlem10 27342 upgr3v3e3cycl 27353 upgr4cycl4dv4e 27358 eulerpathpr 27413 ex-ima 27631 prodfzo03 31011 circlevma 31050 circlemethhgt 31051 hgt750lemg 31062 hgt750lemb 31064 hgt750lema 31065 hgt750leme 31066 tgoldbachgtde 31068 tgoldbachgt 31071 rabren3dioph 37899 refsum2cnlem1 39713 nnsum3primes4 42204 nnsum3primesgbe 42208 nnsum4primesodd 42212 nnsum4primesoddALTV 42213 zlmodzxzldeplem3 42819 zlmodzxzldeplem4 42820 |
Copyright terms: Public domain | W3C validator |