MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2efiatan Structured version   Visualization version   GIF version

Theorem 2efiatan 24844
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
2efiatan (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))

Proof of Theorem 2efiatan
StepHypRef Expression
1 atanval 24810 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 6829 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 2cn 11283 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5 ax-icn 10187 . . . . . 6 i ∈ ℂ
65a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
7 atancl 24807 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
84, 6, 7mulassd 10255 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
9 halfcl 11449 . . . . . . . . . 10 (i ∈ ℂ → (i / 2) ∈ ℂ)
105, 9ax-mp 5 . . . . . . . . 9 (i / 2) ∈ ℂ
113, 5, 10mulassi 10241 . . . . . . . 8 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
123, 5, 10mul12i 10423 . . . . . . . 8 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
13 2ne0 11305 . . . . . . . . . . 11 2 ≠ 0
145, 3, 13divcan2i 10960 . . . . . . . . . 10 (2 · (i / 2)) = i
1514oveq2i 6824 . . . . . . . . 9 (i · (2 · (i / 2))) = (i · i)
16 ixi 10848 . . . . . . . . 9 (i · i) = -1
1715, 16eqtri 2782 . . . . . . . 8 (i · (2 · (i / 2))) = -1
1811, 12, 173eqtri 2786 . . . . . . 7 ((2 · i) · (i / 2)) = -1
1918oveq1i 6823 . . . . . 6 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
20 ax-1cn 10186 . . . . . . . . . 10 1 ∈ ℂ
21 atandm2 24803 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2221simp1bi 1140 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
23 mulcl 10212 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
245, 22, 23sylancr 698 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
25 subcl 10472 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2620, 24, 25sylancr 698 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
2721simp2bi 1141 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2826, 27logcld 24516 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
29 addcl 10210 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3020, 24, 29sylancr 698 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
3121simp3bi 1142 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3230, 31logcld 24516 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3328, 32subcld 10584 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
3433mulm1d 10674 . . . . . 6 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3519, 34syl5eq 2806 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
36 2mulicn 11447 . . . . . . 7 (2 · i) ∈ ℂ
3736a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
3810a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
3937, 38, 33mulassd 10255 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4028, 32negsubdi2d 10600 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4135, 39, 403eqtr3d 2802 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
422, 8, 413eqtr3d 2802 . . 3 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4342fveq2d 6356 . 2 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
44 efsub 15029 . . 3 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
4532, 28, 44syl2anc 696 . 2 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
46 eflog 24522 . . . . 5 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
4730, 31, 46syl2anc 696 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
48 eflog 24522 . . . . 5 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
4926, 27, 48syl2anc 696 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
5047, 49oveq12d 6831 . . 3 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
51 negsub 10521 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
525, 22, 51sylancr 698 . . . . . . 7 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
536mulid1d 10249 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 1) = i)
5416oveq1i 6823 . . . . . . . . 9 ((i · i) · 𝐴) = (-1 · 𝐴)
556, 6, 22mulassd 10255 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((i · i) · 𝐴) = (i · (i · 𝐴)))
5622mulm1d 10674 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-1 · 𝐴) = -𝐴)
5754, 55, 563eqtr3a 2818 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (i · 𝐴)) = -𝐴)
5853, 57oveq12d 6831 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = (i + -𝐴))
596, 22, 6pnpcan2d 10622 . . . . . . 7 (𝐴 ∈ dom arctan → ((i + i) − (𝐴 + i)) = (i − 𝐴))
6052, 58, 593eqtr4d 2804 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = ((i + i) − (𝐴 + i)))
6120a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
626, 61, 24adddid 10256 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((i · 1) + (i · (i · 𝐴))))
6362timesd 11467 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) = (i + i))
6463oveq1d 6828 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) − (𝐴 + i)) = ((i + i) − (𝐴 + i)))
6560, 62, 643eqtr4d 2804 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((2 · i) − (𝐴 + i)))
666, 61, 24subdid 10678 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = ((i · 1) − (i · (i · 𝐴))))
6753, 57oveq12d 6831 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i − -𝐴))
68 subneg 10522 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i − -𝐴) = (i + 𝐴))
695, 22, 68sylancr 698 . . . . . . 7 (𝐴 ∈ dom arctan → (i − -𝐴) = (i + 𝐴))
7067, 69eqtrd 2794 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i + 𝐴))
71 addcom 10414 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + 𝐴) = (𝐴 + i))
725, 22, 71sylancr 698 . . . . . 6 (𝐴 ∈ dom arctan → (i + 𝐴) = (𝐴 + i))
7366, 70, 723eqtrd 2798 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = (𝐴 + i))
7465, 73oveq12d 6831 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = (((2 · i) − (𝐴 + i)) / (𝐴 + i)))
75 ine0 10657 . . . . . 6 i ≠ 0
7675a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ≠ 0)
7730, 26, 6, 27, 76divcan5d 11019 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
78 addcl 10210 . . . . . 6 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
7922, 5, 78sylancl 697 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
80 subneg 10522 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
8122, 5, 80sylancl 697 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
82 atandm 24802 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
8382simp2bi 1141 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
84 negicn 10474 . . . . . . . 8 -i ∈ ℂ
85 subeq0 10499 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
8685necon3bid 2976 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8722, 84, 86sylancl 697 . . . . . . 7 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8883, 87mpbird 247 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
8981, 88eqnetrrd 3000 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
9037, 79, 79, 89divsubdird 11032 . . . 4 (𝐴 ∈ dom arctan → (((2 · i) − (𝐴 + i)) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9174, 77, 903eqtr3d 2802 . . 3 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) / (1 − (i · 𝐴))) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9279, 89dividd 10991 . . . 4 (𝐴 ∈ dom arctan → ((𝐴 + i) / (𝐴 + i)) = 1)
9392oveq2d 6829 . . 3 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 1))
9450, 91, 933eqtrd 2798 . 2 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = (((2 · i) / (𝐴 + i)) − 1))
9543, 45, 943eqtrd 2798 1 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  dom cdm 5266  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129  ici 10130   + caddc 10131   · cmul 10133  cmin 10458  -cneg 10459   / cdiv 10876  2c2 11262  expce 14991  logclog 24500  arctancatan 24790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-atan 24793
This theorem is referenced by:  tanatan  24845
  Copyright terms: Public domain W3C validator