MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshw Structured version   Visualization version   GIF version

Theorem 2cshw 13779
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.)
Assertion
Ref Expression
2cshw ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))

Proof of Theorem 2cshw
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 cshwlen 13765 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
213adant3 1127 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
3 cshwcl 13764 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
43anim1i 593 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ))
543adant2 1126 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ))
6 cshwlen 13765 . . . . 5 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
75, 6syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift 𝑀)))
8 simp1 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
9 zaddcl 11629 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1093adant1 1125 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
118, 10jca 555 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ))
12 cshwlen 13765 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
1311, 12syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) = (♯‘𝑊))
142, 7, 133eqtr4d 2804 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))))
157, 2eqtrd 2794 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘𝑊))
1615oveq2d 6830 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) = (0..^(♯‘𝑊)))
1716eleq2d 2825 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) ↔ 𝑖 ∈ (0..^(♯‘𝑊))))
1833ad2ant1 1128 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
1918adantr 472 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
20 simp3 1133 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2120adantr 472 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
222eqcomd 2766 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) = (♯‘(𝑊 cyclShift 𝑀)))
2322oveq2d 6830 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^(♯‘𝑊)) = (0..^(♯‘(𝑊 cyclShift 𝑀))))
2423eleq2d 2825 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀)))))
2524biimpa 502 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀))))
26 cshwidxmod 13769 . . . . . . . 8 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝑊 cyclShift 𝑀)))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
2719, 21, 25, 26syl3anc 1477 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))))
288adantr 472 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
29 simpl2 1230 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑀 ∈ ℤ)
30 elfzo0 12723 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
31 nn0z 11612 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
3231ad2antrr 764 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℤ)
3320adantl 473 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
3432, 33zaddcld 11698 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℤ)
35 simpr 479 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℕ)
3635adantr 472 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
3734, 36jca 555 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3837ex 449 . . . . . . . . . . . . 13 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
39383adant3 1127 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
4030, 39sylbi 207 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
4140impcom 445 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
42 zmodfzo 12907 . . . . . . . . . 10 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
4341, 42syl 17 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
442oveq2d 6830 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
4544eleq1d 2824 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4645adantr 472 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
4743, 46mpbird 247 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊)))
48 cshwidxmod 13769 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
4928, 29, 47, 48syl3anc 1477 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑀)‘((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀)))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))))
50 nn0re 11513 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
5150ad2antrr 764 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℝ)
52 zre 11593 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5352ad2antll 767 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
5451, 53readdcld 10281 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + 𝑁) ∈ ℝ)
55 zre 11593 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5655ad2antrl 766 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
57 nnrp 12055 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
5857adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℝ+)
5958adantr 472 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
60 modaddmod 12923 . . . . . . . . . . . . . . . . 17 (((𝑖 + 𝑁) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
6154, 56, 59, 60syl3anc 1477 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)))
62 nn0cn 11514 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
6362ad2antrr 764 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑖 ∈ ℂ)
64 zcn 11594 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6564ad2antrl 766 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
66 zcn 11594 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
6766ad2antll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
68 add32r 10467 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
6963, 65, 67, 68syl3anc 1477 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑖 + (𝑀 + 𝑁)) = ((𝑖 + 𝑁) + 𝑀))
7069eqcomd 2766 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑖 + 𝑁) + 𝑀) = (𝑖 + (𝑀 + 𝑁)))
7170oveq1d 6829 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑖 + 𝑁) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7261, 71eqtrd 2794 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7372ex 449 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
74733adant3 1127 . . . . . . . . . . . . 13 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7530, 74sylbi 207 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7675com12 32 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
77763adant1 1125 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
7877imp 444 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)) = ((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊)))
7978fveq2d 6357 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
802adantr 472 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊))
8180oveq2d 6830 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
8281oveq1d 6829 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) = (((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀))
8382oveq1d 6829 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊)) = ((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊)))
8483fveq2d 6357 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = (𝑊‘((((𝑖 + 𝑁) mod (♯‘𝑊)) + 𝑀) mod (♯‘𝑊))))
8510adantr 472 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑀 + 𝑁) ∈ ℤ)
86 simpr 479 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
87 cshwidxmod 13769 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8828, 85, 86, 87syl3anc 1477 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖) = (𝑊‘((𝑖 + (𝑀 + 𝑁)) mod (♯‘𝑊))))
8979, 84, 883eqtr4d 2804 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝑖 + 𝑁) mod (♯‘(𝑊 cyclShift 𝑀))) + 𝑀) mod (♯‘𝑊))) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
9027, 49, 893eqtrd 2798 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
9190ex 449 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝑊)) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
9217, 91sylbid 230 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁))) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
9392ralrimiv 3103 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))
9414, 93jca 555 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖)))
95 cshwcl 13764 . . . . . 6 ((𝑊 cyclShift 𝑀) ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
963, 95syl 17 . . . . 5 (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉)
97 cshwcl 13764 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉)
9896, 97jca 555 . . . 4 (𝑊 ∈ Word 𝑉 → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉))
99983ad2ant1 1128 . . 3 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉))
100 eqwrd 13553 . . 3 ((((𝑊 cyclShift 𝑀) cyclShift 𝑁) ∈ Word 𝑉 ∧ (𝑊 cyclShift (𝑀 + 𝑁)) ∈ Word 𝑉) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
10199, 100syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)) ↔ ((♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)) = (♯‘(𝑊 cyclShift (𝑀 + 𝑁))) ∧ ∀𝑖 ∈ (0..^(♯‘((𝑊 cyclShift 𝑀) cyclShift 𝑁)))(((𝑊 cyclShift 𝑀) cyclShift 𝑁)‘𝑖) = ((𝑊 cyclShift (𝑀 + 𝑁))‘𝑖))))
10294, 101mpbird 247 1 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148   + caddc 10151   < clt 10286  cn 11232  0cn0 11504  cz 11589  +crp 12045  ..^cfzo 12679   mod cmo 12882  chash 13331  Word cword 13497   cyclShift ccsh 13754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-hash 13332  df-word 13505  df-concat 13507  df-substr 13509  df-csh 13755
This theorem is referenced by:  2cshwid  13780  2cshwcom  13782  cshweqdif2  13785  2cshwcshw  13791  cshwcshid  13793  cshwcsh2id  13794  cshwshashlem2  16025
  Copyright terms: Public domain W3C validator