MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2clwwlk Structured version   Visualization version   GIF version

Theorem 2clwwlk2clwwlk 27529
Description: An element of the value of operation 𝐶, i.e., a word being a "double loop", is composed of two closed walks. (Contributed by AV, 28-Apr-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
Assertion
Ref Expression
2clwwlk2clwwlk ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑊   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑣,𝑛)

Proof of Theorem 2clwwlk2clwwlk
StepHypRef Expression
1 uzuzle23 11943 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 2clwwlk.c . . . . . 6 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
322clwwlkel 27528 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
41, 3sylan2 492 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
5 simpr 479 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
65anim1i 593 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
7 3anass 1081 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) ↔ (𝑁 ∈ (ℤ‘3) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
86, 7sylibr 224 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))
9 clwwnonrepclwwnon 27524 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
108, 9syl 17 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
115adantr 472 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑁 ∈ (ℤ‘3))
12 simprl 811 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
13 simprr 813 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = 𝑋)
14 isclwwlknon 27259 . . . . . . . . . 10 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
15 simpr 479 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
1615eqcomd 2767 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0))
1714, 16sylbi 207 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0))
1817ad2antrl 766 . . . . . . . 8 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑊‘0))
1913, 18eqtrd 2795 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
20 2clwwlk2clwwlklem 27525 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
2111, 12, 19, 20syl3anc 1477 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2))
22 eqid 2761 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 27185 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
24 opeq2 4555 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑊) → ⟨(𝑁 − 2), 𝑁⟩ = ⟨(𝑁 − 2), (♯‘𝑊)⟩)
2524oveq2d 6831 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑊) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩))
2625oveq2d 6831 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2726eqcoms 2769 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
2827ad2antlr 765 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)))
29 simpl 474 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ∈ Word (Vtx‘𝐺))
30 fz1ssfz0 12650 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ (0...𝑁)
31 ige3m2fz 12579 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
3230, 31sseldi 3743 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (0...𝑁))
3332adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ (0...𝑁))
3433adantl 473 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...𝑁))
35 oveq2 6823 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = 𝑁 → (0...(♯‘𝑊)) = (0...𝑁))
3635eleq2d 2826 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = 𝑁 → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3736ad2antlr 765 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑁 − 2) ∈ (0...(♯‘𝑊)) ↔ (𝑁 − 2) ∈ (0...𝑁)))
3834, 37mpbird 247 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ (0...(♯‘𝑊)))
39 wrdcctswrd 13686 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ (0...(♯‘𝑊))) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4029, 38, 39syl2an2r 911 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), (♯‘𝑊)⟩)) = 𝑊)
4128, 40eqtrd 2795 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4223, 41sylan 489 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4342ex 449 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4443adantr 472 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4514, 44sylbi 207 . . . . . . . . 9 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4645adantr 472 . . . . . . . 8 ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊))
4746impcom 445 . . . . . . 7 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)) = 𝑊)
4847eqcomd 2767 . . . . . 6 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → 𝑊 = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))
4910, 21, 483jca 1123 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))))
5049ex 449 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
514, 50sylbid 230 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩)))))
52 rspceov 6857 . . 3 (((𝑊 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∧ 𝑊 = ((𝑊 substr ⟨0, (𝑁 − 2)⟩) ++ (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩))) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏))
5351, 52syl6 35 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) → ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
54 eluzelcn 11912 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
55 2cnd 11306 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
5654, 55npcand 10609 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
5756adantl 473 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑁 − 2) + 2) = 𝑁)
5857oveq2d 6831 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
5958eleq2d 2826 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) ↔ (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
6059biimpd 219 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)))
61 clwwlknonccat 27266 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)((𝑁 − 2) + 2)))
6260, 61impel 486 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
63 isclwwlknon 27259 . . . . . . . 8 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ↔ (𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋))
64 clwwlkn2 27195 . . . . . . . . . 10 (𝑏 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)))
65 isclwwlknon 27259 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
6622clwwlknbp 27185 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)))
67 simpl 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑎 ∈ Word (Vtx‘𝐺))
68 simprr 813 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 𝑏 ∈ Word (Vtx‘𝐺))
69 2nn 11398 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ
70 lbfzo0 12723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
7169, 70mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ (0..^2)
72 oveq2 6823 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑏) = 2 → (0..^(♯‘𝑏)) = (0..^2))
7371, 72syl5eleqr 2847 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑏) = 2 → 0 ∈ (0..^(♯‘𝑏)))
7473ad2antrl 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → 0 ∈ (0..^(♯‘𝑏)))
7567, 68, 743jca 1123 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7675adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
7776adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))))
78 ccatval3 13572 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑏))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))) = (𝑏‘0))
80 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2))
8180oveq2d 6831 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8281adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) → (0 + (♯‘𝑎)) = (0 + (𝑁 − 2)))
8354, 55subcld 10605 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
8483addid2d 10450 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8584adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (0 + (𝑁 − 2)) = (𝑁 − 2))
8682, 85sylan9eq 2815 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (0 + (♯‘𝑎)) = (𝑁 − 2))
8786eqcomd 2767 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) = (0 + (♯‘𝑎)))
8887fveq2d 6358 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = ((𝑎 ++ 𝑏)‘(0 + (♯‘𝑎))))
89 simpl 474 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑏‘0) = 𝑋)
9089eqcomd 2767 . . . . . . . . . . . . . . . . . . . 20 (((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2)) → 𝑋 = (𝑏‘0))
9190ad2antlr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 = (𝑏‘0))
9279, 88, 913eqtr4d 2805 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺))) ∧ ((𝑏‘0) = 𝑋 ∧ (♯‘𝑎) = (𝑁 − 2))) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
9392exp53 648 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ Word (Vtx‘𝐺) → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → ((♯‘𝑎) = (𝑁 − 2) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9493com24 95 . . . . . . . . . . . . . . . 16 (𝑎 ∈ Word (Vtx‘𝐺) → ((♯‘𝑎) = (𝑁 − 2) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))))
9594imp 444 . . . . . . . . . . . . . . 15 ((𝑎 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9666, 95syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9796adantr 472 . . . . . . . . . . . . 13 ((𝑎 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9865, 97sylbi 207 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑏‘0) = 𝑋 → (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
9998com13 88 . . . . . . . . . . 11 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
100993adant3 1127 . . . . . . . . . 10 (((♯‘𝑏) = 2 ∧ 𝑏 ∈ Word (Vtx‘𝐺) ∧ {(𝑏‘0), (𝑏‘1)} ∈ (Edg‘𝐺)) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
10164, 100sylbi 207 . . . . . . . . 9 (𝑏 ∈ (2 ClWWalksN 𝐺) → ((𝑏‘0) = 𝑋 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))))
102101imp 444 . . . . . . . 8 ((𝑏 ∈ (2 ClWWalksN 𝐺) ∧ (𝑏‘0) = 𝑋) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10363, 102sylbi 207 . . . . . . 7 (𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
104103impcom 445 . . . . . 6 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋))
105104impcom 445 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)
10622clwwlkel 27528 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
1071, 106sylan2 492 . . . . . 6 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
108107adantr 472 . . . . 5 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → ((𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ++ 𝑏) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ ((𝑎 ++ 𝑏)‘(𝑁 − 2)) = 𝑋)))
10962, 105, 108mpbir2and 995 . . . 4 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁))
110 eleq1 2828 . . . 4 (𝑊 = (𝑎 ++ 𝑏) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ++ 𝑏) ∈ (𝑋𝐶𝑁)))
111109, 110syl5ibrcom 237 . . 3 (((𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∧ 𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2))) → (𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
112111rexlimdvva 3177 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏) → 𝑊 ∈ (𝑋𝐶𝑁)))
11353, 112impbid 202 1 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wrex 3052  {crab 3055  {cpr 4324  cop 4328  cfv 6050  (class class class)co 6815  cmpt2 6817  0cc0 10149  1c1 10150   + caddc 10152  cmin 10479  cn 11233  2c2 11283  3c3 11284  cuz 11900  ...cfz 12540  ..^cfzo 12680  chash 13332  Word cword 13498   ++ cconcat 13500   substr csubstr 13502  Vtxcvtx 26095  Edgcedg 26160   ClWWalksN cclwwlkn 27169  ClWWalksNOncclwwlknon 27254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510  df-s2 13814  df-wwlks 26955  df-wwlksn 26956  df-clwwlk 27127  df-clwwlkn 27171  df-clwwlknon 27255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator