Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atneat Structured version   Visualization version   GIF version

Theorem 2atneat 35324
Description: The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.)
Hypotheses
Ref Expression
2atneat.j = (join‘𝐾)
2atneat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atneat ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ¬ (𝑃 𝑄) ∈ 𝐴)

Proof of Theorem 2atneat
StepHypRef Expression
1 simpl 468 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝐾 ∈ HL)
2 simpr1 1233 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃𝐴)
3 simpr2 1235 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑄𝐴)
4 simpr3 1237 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃𝑄)
5 2atneat.j . . . 4 = (join‘𝐾)
6 2atneat.a . . . 4 𝐴 = (Atoms‘𝐾)
7 eqid 2771 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
85, 6, 7llni2 35321 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
91, 2, 3, 4, 8syl31anc 1479 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝑃 𝑄) ∈ (LLines‘𝐾))
106, 7llnneat 35323 . 2 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾)) → ¬ (𝑃 𝑄) ∈ 𝐴)
119, 10syldan 579 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ¬ (𝑃 𝑄) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cfv 6030  (class class class)co 6796  joincjn 17152  Atomscatm 35072  HLchlt 35159  LLinesclln 35300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35307
This theorem is referenced by:  cdleme18b  36102
  Copyright terms: Public domain W3C validator