Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Structured version   Visualization version   GIF version

Theorem 2at0mat0 35332
Description: Special case of 2atmat0 35333 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j = (join‘𝐾)
2atmatz.m = (meet‘𝐾)
2atmatz.z 0 = (0.‘𝐾)
2atmatz.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2at0mat0 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 807 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
2 simplr1 1261 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑅𝐴)
3 simpr 479 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑆𝐴)
4 simplr3 1265 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝑃 𝑄) ≠ (𝑅 𝑆))
5 simpl1 1228 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
6 hlol 35169 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
75, 6syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
8 simpr1 1234 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
9 simpr2 1236 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
10 eqid 2760 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
11 2atmatz.j . . . . . . . . 9 = (join‘𝐾)
12 2atmatz.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
1310, 11, 12hlatjcl 35174 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
145, 8, 9, 13syl3anc 1477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
15 simpl3 1232 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
16 2atmatz.m . . . . . . . 8 = (meet‘𝐾)
17 2atmatz.z . . . . . . . 8 0 = (0.‘𝐾)
1810, 16, 17, 12meetat2 35105 . . . . . . 7 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
197, 14, 15, 18syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
2019adantr 472 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
21 oveq1 6821 . . . . . . . . . 10 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2211, 12hlatjidm 35176 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
235, 15, 22syl2anc 696 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 𝑄) = 𝑄)
2421, 23sylan9eqr 2816 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
2524oveq1d 6829 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑄 (𝑅 𝑆)))
26 hllat 35171 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
275, 26syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
2810, 12atbase 35097 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2915, 28syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
3010, 16latmcom 17296 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3127, 29, 14, 30syl3anc 1477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3231adantr 472 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3325, 32eqtrd 2794 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3433eleq1d 2824 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑅 𝑆) 𝑄) ∈ 𝐴))
3533eqeq1d 2762 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑅 𝑆) 𝑄) = 0 ))
3634, 35orbi12d 748 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 )))
3720, 36mpbird 247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
3810, 11, 12hlatjcl 35174 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3938adantr 472 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4010, 16, 17, 12meetat2 35105 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆𝐴) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
417, 39, 9, 40syl3anc 1477 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
4241adantr 472 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
43 oveq1 6821 . . . . . . . . . . 11 (𝑅 = 𝑆 → (𝑅 𝑆) = (𝑆 𝑆))
4411, 12hlatjidm 35176 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑆 𝑆) = 𝑆)
455, 9, 44syl2anc 696 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆 𝑆) = 𝑆)
4643, 45sylan9eqr 2816 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (𝑅 𝑆) = 𝑆)
4746oveq2d 6830 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑆))
4847eleq1d 2824 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝐴))
4947eqeq1d 2762 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑆) = 0 ))
5048, 49orbi12d 748 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 )))
5142, 50mpbird 247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
5251adantlr 753 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
53 df-ne 2933 . . . . . . . 8 (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 ↔ ¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 )
54 simpll1 1255 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝐾 ∈ HL)
55 simpll2 1257 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝐴)
56 simpll3 1259 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑄𝐴)
57 simpr1 1234 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝑄)
58 eqid 2760 . . . . . . . . . . . . 13 (LLines‘𝐾) = (LLines‘𝐾)
5911, 12, 58llni2 35319 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
6054, 55, 56, 57, 59syl31anc 1480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ∈ (LLines‘𝐾))
61 simplr1 1261 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝐴)
62 simplr2 1263 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑆𝐴)
63 simpr2 1236 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝑆)
6411, 12, 58llni2 35319 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
6554, 61, 62, 63, 64syl31anc 1480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑅 𝑆) ∈ (LLines‘𝐾))
66 simplr3 1265 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ≠ (𝑅 𝑆))
67 simpr3 1238 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )
6816, 17, 12, 582llnmat 35331 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑄) ≠ (𝑅 𝑆) ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
6954, 60, 65, 66, 67, 68syl32anc 1485 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
70693exp2 1448 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃𝑄 → (𝑅𝑆 → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))))
7170imp31 447 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7253, 71syl5bir 233 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7372orrd 392 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ∨ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7473orcomd 402 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7552, 74pm2.61dane 3019 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7637, 75pm2.61dane 3019 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
771, 2, 3, 4, 76syl13anc 1479 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
78 simpl1 1228 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
7978, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
8038adantr 472 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
81 simpr1 1234 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
8210, 16, 17, 12meetat2 35105 . . . . 5 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅𝐴) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8379, 80, 81, 82syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8483adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
85 oveq2 6822 . . . . . . 7 (𝑆 = 0 → (𝑅 𝑆) = (𝑅 0 ))
8610, 12atbase 35097 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
8781, 86syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
8810, 11, 17olj01 35033 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 0 ) = 𝑅)
8979, 87, 88syl2anc 696 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 0 ) = 𝑅)
9085, 89sylan9eqr 2816 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (𝑅 𝑆) = 𝑅)
9190oveq2d 6830 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
9291eleq1d 2824 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝐴))
9391eqeq1d 2762 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑅) = 0 ))
9492, 93orbi12d 748 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 )))
9584, 94mpbird 247 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
96 simpr2 1236 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆𝐴𝑆 = 0 ))
9777, 95, 96mpjaodan 862 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  cfv 6049  (class class class)co 6814  Basecbs 16079  joincjn 17165  meetcmee 17166  0.cp0 17258  Latclat 17266  OLcol 34982  Atomscatm 35071  HLchlt 35158  LLinesclln 35298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305
This theorem is referenced by:  2atmat0  35333  cdlemg31b0a  36503
  Copyright terms: Public domain W3C validator