![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albiim | Structured version Visualization version GIF version |
Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2albiim | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1965 | . . 3 ⊢ (∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) | |
2 | 1 | albii 1896 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) |
3 | 19.26 1947 | . 2 ⊢ (∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 264 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: sbnf2 2576 2eu6 2696 eqopab2b 5155 eqrel 5366 eqrelrel 5378 eqoprab2b 6878 eqrelrd2 29735 eqrel2 34392 relcnveq2 34418 elrelscnveq2 34566 pm14.123a 39128 |
Copyright terms: Public domain | W3C validator |