![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | albidv 1889 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
3 | 2 | albidv 1889 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: dff13 6552 qliftfun 7875 seqf1o 12882 fi1uzind 13317 brfi1indALT 13320 trclfvcotr 13794 dchrelbas3 25008 isch2 28208 mclsssvlem 31585 mclsval 31586 mclsax 31592 mclsind 31593 trer 32435 mbfresfi 33586 isass 33775 relcnveq2 34235 elrelscnveq2 34383 elsymrels3 34440 elsymrels5 34442 lpolsetN 37088 islpolN 37089 ismrc 37581 2sbc6g 38933 |
Copyright terms: Public domain | W3C validator |