Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkd Structured version   Visualization version   GIF version

Theorem 1wlkd 27318
 Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1wlkd.v 𝑉 = (Vtx‘𝐺)
1wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1wlkd (𝜑𝐹(Walks‘𝐺)𝑃)

Proof of Theorem 1wlkd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1wlkd.p . . 3 𝑃 = ⟨“𝑋𝑌”⟩
2 1wlkd.f . . 3 𝐹 = ⟨“𝐽”⟩
3 1wlkd.x . . 3 (𝜑𝑋𝑉)
4 1wlkd.y . . 3 (𝜑𝑌𝑉)
5 1wlkd.l . . 3 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
6 1wlkd.j . . 3 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
71, 2, 3, 4, 5, 61wlkdlem3 27316 . 2 (𝜑𝐹 ∈ Word dom 𝐼)
81, 2, 3, 41wlkdlem1 27314 . 2 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
91, 2, 3, 4, 5, 61wlkdlem4 27317 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
10 1wlkd.v . . . 4 𝑉 = (Vtx‘𝐺)
11101vgrex 26102 . . 3 (𝑋𝑉𝐺 ∈ V)
12 1wlkd.i . . . 4 𝐼 = (iEdg‘𝐺)
1310, 12iswlkg 26743 . . 3 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
143, 11, 133syl 18 . 2 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
157, 8, 9, 14mpbir3and 1426 1 (𝜑𝐹(Walks‘𝐺)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382  if-wif 1048   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  Vcvv 3349   ⊆ wss 3721  {csn 4314  {cpr 4316   class class class wbr 4784  dom cdm 5249  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140  ...cfz 12532  ..^cfzo 12672  ♯chash 13320  Word cword 13486  ⟨“cs1 13489  ⟨“cs2 13794  Vtxcvtx 26094  iEdgciedg 26095  Walkscwlks 26726 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-ifp 1049  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-s2 13801  df-wlks 26729 This theorem is referenced by:  1trld  27319  1pthond  27321  upgr1wlkd  27324
 Copyright terms: Public domain W3C validator