![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1vgrex | Structured version Visualization version GIF version |
Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6362 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ V) | |
2 | 1vgrex.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | eleq2s 2868 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ‘cfv 6031 Vtxcvtx 26095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 ax-pow 4974 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-dm 5259 df-iota 5994 df-fv 6039 |
This theorem is referenced by: upgr1e 26229 uspgr1e 26359 nbgrval 26452 cplgr1vlem 26560 vtxdgval 26599 vtxdgelxnn0 26603 wlkson 26787 trlsonfval 26837 pthsonfval 26871 spthson 26872 2wlkd 27083 is0wlk 27297 0wlkon 27300 is0trl 27303 0trlon 27304 0pthon 27307 0clwlkv 27311 1wlkd 27321 3wlkd 27350 wlkl0 27558 |
Copyright terms: Public domain | W3C validator |