![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1unit | Structured version Visualization version GIF version |
Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unit.2 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
1unit | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | unit.2 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | ringidcl 18768 | . . 3 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
4 | eqid 2760 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
5 | 1, 4 | dvdsrid 18851 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → 1 (∥r‘𝑅) 1 ) |
6 | 3, 5 | mpdan 705 | . 2 ⊢ (𝑅 ∈ Ring → 1 (∥r‘𝑅) 1 ) |
7 | eqid 2760 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
8 | 7 | opprring 18831 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
9 | 7, 1 | opprbas 18829 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
10 | eqid 2760 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
11 | 9, 10 | dvdsrid 18851 | . . 3 ⊢ (((oppr‘𝑅) ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → 1 (∥r‘(oppr‘𝑅)) 1 ) |
12 | 8, 3, 11 | syl2anc 696 | . 2 ⊢ (𝑅 ∈ Ring → 1 (∥r‘(oppr‘𝑅)) 1 ) |
13 | unit.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
14 | 13, 2, 4, 7, 10 | isunit 18857 | . 2 ⊢ ( 1 ∈ 𝑈 ↔ ( 1 (∥r‘𝑅) 1 ∧ 1 (∥r‘(oppr‘𝑅)) 1 )) |
15 | 6, 12, 14 | sylanbrc 701 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 Basecbs 16059 1rcur 18701 Ringcrg 18747 opprcoppr 18822 ∥rcdsr 18838 Unitcui 18839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-mulr 16157 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-dvdsr 18841 df-unit 18842 |
This theorem is referenced by: unitgrp 18867 unitgrpid 18869 unitsubm 18870 1rinv 18879 0unit 18880 dvr1 18889 irredn1 18906 irredneg 18910 isdrng2 18959 drngunz 18964 subrgugrp 19001 deg1invg 24065 mon1puc1p 24109 dchrelbasd 25163 dchrabs 25184 dchrptlem2 25189 dchrisum0re 25401 matunitlindf 33720 mon1psubm 38286 nzrneg1ne0 42379 |
Copyright terms: Public domain | W3C validator |