![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10196 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | mulid1i 10244 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 (class class class)co 6793 1c1 10139 · cmul 10143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-mulcl 10200 ax-mulcom 10202 ax-mulass 10204 ax-distr 10205 ax-1rid 10208 ax-cnre 10211 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 |
This theorem is referenced by: neg1mulneg1e1 11447 addltmul 11470 1exp 13096 expge1 13104 mulexp 13106 mulexpz 13107 expaddz 13111 m1expeven 13114 sqrecii 13153 i4 13174 facp1 13269 hashf1 13443 binom 14769 prodf1 14830 prodfrec 14834 fprodmul 14897 fprodge1 14932 fallfac0 14965 binomfallfac 14978 pwp1fsum 15322 rpmul 15580 2503lem2 16052 2503lem3 16053 4001lem4 16058 abvtrivd 19050 iimulcl 22956 dvexp 23936 dvef 23963 mulcxplem 24651 cxpmul2 24656 dvsqrt 24704 dvcnsqrt 24706 abscxpbnd 24715 1cubr 24790 dchrmulcl 25195 dchr1cl 25197 dchrinvcl 25199 lgslem3 25245 lgsval2lem 25253 lgsneg 25267 lgsdilem 25270 lgsdir 25278 lgsdi 25280 lgsquad2lem1 25330 lgsquad2lem2 25331 dchrisum0flblem2 25419 rpvmasum2 25422 mudivsum 25440 pntibndlem2 25501 axlowdimlem6 26048 hisubcomi 28301 lnophmlem2 29216 1neg1t1neg1 29854 sgnmul 30944 hgt750lem2 31070 subfacval2 31507 faclim2 31972 knoppndvlem18 32857 pell1234qrmulcl 37945 pellqrex 37969 binomcxplemnotnn0 39081 dvnprodlem3 40681 stoweidlem13 40747 stoweidlem16 40750 wallispi 40804 wallispi2lem2 40806 nn0sumshdiglemB 42942 |
Copyright terms: Public domain | W3C validator |