![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stval2 | Structured version Visualization version GIF version |
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
1stval2 | ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5322 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 3331 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3331 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op1st 7329 | . . . . 5 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
5 | 2, 3 | op1stb 5076 | . . . . 5 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
6 | 4, 5 | eqtr4i 2773 | . . . 4 ⊢ (1st ‘〈𝑥, 𝑦〉) = ∩ ∩ 〈𝑥, 𝑦〉 |
7 | fveq2 6340 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = (1st ‘〈𝑥, 𝑦〉)) | |
8 | inteq 4618 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ 𝐴 = ∩ 〈𝑥, 𝑦〉) | |
9 | 8 | inteqd 4620 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, 𝑦〉) |
10 | 6, 7, 9 | 3eqtr4a 2808 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = ∩ ∩ 𝐴) |
11 | 10 | exlimivv 1997 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = ∩ ∩ 𝐴) |
12 | 1, 11 | sylbi 207 | 1 ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∃wex 1841 ∈ wcel 2127 Vcvv 3328 〈cop 4315 ∩ cint 4615 × cxp 5252 ‘cfv 6037 1st c1st 7319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-int 4616 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-iota 6000 df-fun 6039 df-fv 6045 df-1st 7321 |
This theorem is referenced by: 1stdm 7370 |
Copyright terms: Public domain | W3C validator |