![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stval | ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4324 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | dmeqd 5464 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
3 | 2 | unieqd 4582 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
4 | df-1st 7314 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | snex 5036 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | dmex 7245 | . . . 4 ⊢ dom {𝐴} ∈ V |
7 | 6 | uniex 7099 | . . 3 ⊢ ∪ dom {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 6424 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
9 | fvprc 6326 | . . 3 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∅) | |
10 | snprc 4387 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 206 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | dmeqd 5464 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = dom ∅) |
13 | dm0 5477 | . . . . . 6 ⊢ dom ∅ = ∅ | |
14 | 12, 13 | syl6eq 2820 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = ∅) |
15 | 14 | unieqd 4582 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∪ ∅) |
16 | uni0 4599 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | syl6eq 2820 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2807 | . 2 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
19 | 8, 18 | pm2.61i 176 | 1 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∅c0 4061 {csn 4314 ∪ cuni 4572 dom cdm 5249 ‘cfv 6031 1st c1st 7312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fv 6039 df-1st 7314 |
This theorem is referenced by: 1stnpr 7318 1st0 7320 op1st 7322 1st2val 7342 elxp6 7348 mpt2xopxnop0 7492 |
Copyright terms: Public domain | W3C validator |