![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stfval | Structured version Visualization version GIF version |
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
1stfval.p | ⊢ 𝑃 = (𝐶 1stF 𝐷) |
Ref | Expression |
---|---|
1stfval | ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.p | . 2 ⊢ 𝑃 = (𝐶 1stF 𝐷) | |
2 | 1stfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | 1stfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | fvex 6239 | . . . . . . 7 ⊢ (Base‘𝑐) ∈ V | |
5 | fvex 6239 | . . . . . . 7 ⊢ (Base‘𝑑) ∈ V | |
6 | 4, 5 | xpex 7004 | . . . . . 6 ⊢ ((Base‘𝑐) × (Base‘𝑑)) ∈ V |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V) |
8 | simpl 472 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶) | |
9 | 8 | fveq2d 6233 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶)) |
10 | simpr 476 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | |
11 | 10 | fveq2d 6233 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷)) |
12 | 9, 11 | xpeq12d 5174 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷))) |
13 | 1stfval.t | . . . . . . . 8 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
14 | eqid 2651 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
15 | eqid 2651 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | 13, 14, 15 | xpcbas 16865 | . . . . . . 7 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇) |
17 | 1stfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑇) | |
18 | 16, 17 | eqtr4i 2676 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = 𝐵 |
19 | 12, 18 | syl6eq 2701 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵) |
20 | simpr 476 | . . . . . . 7 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | |
21 | 20 | reseq2d 5428 | . . . . . 6 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (1st ↾ 𝑏) = (1st ↾ 𝐵)) |
22 | simpll 805 | . . . . . . . . . . . . 13 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶) | |
23 | simplr 807 | . . . . . . . . . . . . 13 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) | |
24 | 22, 23 | oveq12d 6708 | . . . . . . . . . . . 12 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷)) |
25 | 24, 13 | syl6eqr 2703 | . . . . . . . . . . 11 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇) |
26 | 25 | fveq2d 6233 | . . . . . . . . . 10 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇)) |
27 | 1stfval.h | . . . . . . . . . 10 ⊢ 𝐻 = (Hom ‘𝑇) | |
28 | 26, 27 | syl6eqr 2703 | . . . . . . . . 9 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻) |
29 | 28 | oveqd 6707 | . . . . . . . 8 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦)) |
30 | 29 | reseq2d 5428 | . . . . . . 7 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (1st ↾ (𝑥𝐻𝑦))) |
31 | 20, 20, 30 | mpt2eq123dv 6759 | . . . . . 6 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))) |
32 | 21, 31 | opeq12d 4441 | . . . . 5 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
33 | 7, 19, 32 | csbied2 3594 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
34 | df-1stf 16860 | . . . 4 ⊢ 1stF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉) | |
35 | opex 4962 | . . . 4 ⊢ 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉 ∈ V | |
36 | 33, 34, 35 | ovmpt2a 6833 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 1stF 𝐷) = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
37 | 2, 3, 36 | syl2anc 694 | . 2 ⊢ (𝜑 → (𝐶 1stF 𝐷) = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
38 | 1, 37 | syl5eq 2697 | 1 ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⦋csb 3566 〈cop 4216 × cxp 5141 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 Basecbs 15904 Hom chom 15999 Catccat 16372 ×c cxpc 16855 1stF c1stf 16856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-hom 16013 df-cco 16014 df-xpc 16859 df-1stf 16860 |
This theorem is referenced by: 1stf1 16879 1stf2 16880 1stfcl 16884 |
Copyright terms: Public domain | W3C validator |