MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcrest Structured version   Visualization version   GIF version

Theorem 1stcrest 21478
Description: A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stcrest ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 1st𝜔)

Proof of Theorem 1stcrest
Dummy variables 𝑡 𝑎 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 21468 . . 3 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ Top)
2 resttop 21186 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 489 . 2 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
4 eqid 2760 . . . . . . . 8 𝐽 = 𝐽
54restuni2 21193 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
61, 5sylan 489 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
76eleq2d 2825 . . . . 5 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝑥 ∈ (𝐴 𝐽) ↔ 𝑥 (𝐽t 𝐴)))
87biimpar 503 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 (𝐽t 𝐴)) → 𝑥 ∈ (𝐴 𝐽))
9 simpl 474 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → 𝐽 ∈ 1st𝜔)
10 inss2 3977 . . . . . . 7 (𝐴 𝐽) ⊆ 𝐽
1110sseli 3740 . . . . . 6 (𝑥 ∈ (𝐴 𝐽) → 𝑥 𝐽)
1241stcclb 21469 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 𝐽) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))
139, 11, 12syl2an 495 . . . . 5 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))
14 simplll 815 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐽 ∈ 1st𝜔)
15 elpwi 4312 . . . . . . . . 9 (𝑡 ∈ 𝒫 𝐽𝑡𝐽)
1615ad2antrl 766 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝑡𝐽)
17 ssrest 21202 . . . . . . . 8 ((𝐽 ∈ 1st𝜔 ∧ 𝑡𝐽) → (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
1814, 16, 17syl2anc 696 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
19 ovex 6842 . . . . . . . 8 (𝐽t 𝐴) ∈ V
2019elpw2 4977 . . . . . . 7 ((𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴) ↔ (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
2118, 20sylibr 224 . . . . . 6 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴))
22 vex 3343 . . . . . . . 8 𝑡 ∈ V
23 simpllr 817 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐴𝑉)
24 restval 16309 . . . . . . . 8 ((𝑡 ∈ V ∧ 𝐴𝑉) → (𝑡t 𝐴) = ran (𝑣𝑡 ↦ (𝑣𝐴)))
2522, 23, 24sylancr 698 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) = ran (𝑣𝑡 ↦ (𝑣𝐴)))
26 simprrl 823 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝑡 ≼ ω)
27 1stcrestlem 21477 . . . . . . . 8 (𝑡 ≼ ω → ran (𝑣𝑡 ↦ (𝑣𝐴)) ≼ ω)
2826, 27syl 17 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ran (𝑣𝑡 ↦ (𝑣𝐴)) ≼ ω)
2925, 28eqbrtrd 4826 . . . . . 6 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ≼ ω)
301ad3antrrr 768 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐽 ∈ Top)
31 elrest 16310 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑎𝐽 𝑧 = (𝑎𝐴)))
3230, 23, 31syl2anc 696 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑎𝐽 𝑧 = (𝑎𝐴)))
33 r19.29 3210 . . . . . . . . . . . 12 ((∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ ∃𝑎𝐽 𝑧 = (𝑎𝐴)) → ∃𝑎𝐽 ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)))
34 simprr 813 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → 𝑥𝐴)
3534a1d 25 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦𝑥𝐴))
3635ancld 577 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦 → (𝑥𝑦𝑥𝐴)))
37 elin 3939 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑦𝐴) ↔ (𝑥𝑦𝑥𝐴))
3836, 37syl6ibr 242 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦𝑥 ∈ (𝑦𝐴)))
39 ssrin 3981 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑎 → (𝑦𝐴) ⊆ (𝑎𝐴))
4039a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑦𝑎 → (𝑦𝐴) ⊆ (𝑎𝐴)))
4138, 40anim12d 587 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → ((𝑥𝑦𝑦𝑎) → (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
4241reximdv 3154 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑦𝑡 (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
43 vex 3343 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
4443inex1 4951 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴) ∈ V
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) ∧ 𝑦𝑡) → (𝑦𝐴) ∈ V)
46 simp-4r 827 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → 𝐴𝑉)
47 elrest 16310 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ V ∧ 𝐴𝑉) → (𝑤 ∈ (𝑡t 𝐴) ↔ ∃𝑦𝑡 𝑤 = (𝑦𝐴)))
4822, 46, 47sylancr 698 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑤 ∈ (𝑡t 𝐴) ↔ ∃𝑦𝑡 𝑤 = (𝑦𝐴)))
49 eleq2 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑦𝐴) → (𝑥𝑤𝑥 ∈ (𝑦𝐴)))
50 sseq1 3767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑦𝐴) → (𝑤 ⊆ (𝑎𝐴) ↔ (𝑦𝐴) ⊆ (𝑎𝐴)))
5149, 50anbi12d 749 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝑦𝐴) → ((𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5251adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) ∧ 𝑤 = (𝑦𝐴)) → ((𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5345, 48, 52rexxfr2d 5032 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ ∃𝑦𝑡 (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5442, 53sylibrd 249 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
5554expr 644 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (𝑥𝐴 → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
5655com23 86 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → (𝑥𝐴 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
5756imim2d 57 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) → (𝑥𝑎 → (𝑥𝐴 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))))
5857imp4b 614 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) ∧ (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))) → ((𝑥𝑎𝑥𝐴) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
59 eleq2 2828 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎𝐴) → (𝑥𝑧𝑥 ∈ (𝑎𝐴)))
60 elin 3939 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑎𝐴) ↔ (𝑥𝑎𝑥𝐴))
6159, 60syl6bb 276 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎𝐴) → (𝑥𝑧 ↔ (𝑥𝑎𝑥𝐴)))
62 sseq2 3768 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎𝐴) → (𝑤𝑧𝑤 ⊆ (𝑎𝐴)))
6362anbi2d 742 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎𝐴) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
6463rexbidv 3190 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎𝐴) → (∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
6561, 64imbi12d 333 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎𝐴) → ((𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)) ↔ ((𝑥𝑎𝑥𝐴) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
6658, 65syl5ibrcom 237 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) ∧ (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))) → (𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6766expimpd 630 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6867rexlimdva 3169 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∃𝑎𝐽 ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6933, 68syl5 34 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → ((∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ ∃𝑎𝐽 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7069expd 451 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))))
7170impr 650 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)))) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7271adantrrl 762 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7332, 72sylbid 230 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑧 ∈ (𝐽t 𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7473ralrimiv 3103 . . . . . 6 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))
75 breq1 4807 . . . . . . . 8 (𝑦 = (𝑡t 𝐴) → (𝑦 ≼ ω ↔ (𝑡t 𝐴) ≼ ω))
76 rexeq 3278 . . . . . . . . . 10 (𝑦 = (𝑡t 𝐴) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))
7776imbi2d 329 . . . . . . . . 9 (𝑦 = (𝑡t 𝐴) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7877ralbidv 3124 . . . . . . . 8 (𝑦 = (𝑡t 𝐴) → (∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7975, 78anbi12d 749 . . . . . . 7 (𝑦 = (𝑡t 𝐴) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ((𝑡t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))))
8079rspcev 3449 . . . . . 6 (((𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴) ∧ ((𝑡t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8121, 29, 74, 80syl12anc 1475 . . . . 5 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8213, 81rexlimddv 3173 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
838, 82syldan 488 . . 3 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 (𝐽t 𝐴)) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8483ralrimiva 3104 . 2 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → ∀𝑥 (𝐽t 𝐴)∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
85 eqid 2760 . . 3 (𝐽t 𝐴) = (𝐽t 𝐴)
8685is1stc2 21467 . 2 ((𝐽t 𝐴) ∈ 1st𝜔 ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 (𝐽t 𝐴)∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
873, 84, 86sylanbrc 701 1 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  cin 3714  wss 3715  𝒫 cpw 4302   cuni 4588   class class class wbr 4804  cmpt 4881  ran crn 5267  (class class class)co 6814  ωcom 7231  cdom 8121  t crest 16303  Topctop 20920  1st𝜔c1stc 21462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-fin 8127  df-fi 8484  df-card 8975  df-acn 8978  df-rest 16305  df-topgen 16326  df-top 20921  df-topon 20938  df-bases 20972  df-1stc 21464
This theorem is referenced by:  lly1stc  21521
  Copyright terms: Public domain W3C validator