MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   GIF version

Theorem 1stconst 7434
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4451 . . 3 (𝐵𝑉 → {𝐵} ≠ ∅)
2 fo1stres 7360 . . 3 ({𝐵} ≠ ∅ → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 17 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 3523 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2663 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 3343 . . . . . . . 8 𝑦 ∈ V
76brres 5560 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
8 fo1st 7354 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 6279 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 3343 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6398 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 710 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi1i 733 . . . . . . . 8 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
15 elxp7 7369 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2827 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpa 502 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (1st𝑥) ∈ 𝐴) → 𝑦𝐴)
1817adantrr 755 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) → 𝑦𝐴)
1918adantrl 754 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑦𝐴)
20 elsni 4338 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 7370 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221an12s 878 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanr2 688 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵})) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantrrl 762 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 555 . . . . . . . . . . 11 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylan2b 493 . . . . . . . . . 10 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 473 . . . . . . . . 9 ((𝐵𝑉 ∧ ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 813 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2928fveq2d 6357 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
30 simprl 811 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
31 simpl 474 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
32 op1stg 7346 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3330, 31, 32syl2anc 696 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3429, 33eqtrd 2794 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
35 snidg 4351 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3635adantr 472 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
37 opelxpi 5305 . . . . . . . . . . . 12 ((𝑦𝐴𝐵 ∈ {𝐵}) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3830, 36, 37syl2anc 696 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3928, 38eqeltrd 2839 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
4034, 39jca 555 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})))
4127, 40impbida 913 . . . . . . . 8 (𝐵𝑉 → (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4214, 41syl5bbr 274 . . . . . . 7 (𝐵𝑉 → ((𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
437, 42syl5bb 272 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4443mobidv 2628 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
455, 44mpbiri 248 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4645alrimiv 2004 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
47 funcnv2 6118 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4846, 47sylibr 224 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
49 dff1o3 6305 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
503, 48, 49sylanbrc 701 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1630   = wceq 1632  wcel 2139  ∃*wmo 2608  wne 2932  Vcvv 3340  c0 4058  {csn 4321  cop 4327   class class class wbr 4804   × cxp 5264  ccnv 5265  cres 5268  Fun wfun 6043   Fn wfn 6044  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049  1st c1st 7332  2nd c2nd 7333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-1st 7334  df-2nd 7335
This theorem is referenced by:  curry2  7441  domss2  8286  fv1stcnv  32006
  Copyright terms: Public domain W3C validator