MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgenlem Structured version   Visualization version   GIF version

Theorem 1stckgenlem 21404
Description: The one-point compactification of is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
1stckgen.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stckgen.2 (𝜑𝐹:ℕ⟶𝑋)
1stckgen.3 (𝜑𝐹(⇝𝑡𝐽)𝐴)
Assertion
Ref Expression
1stckgenlem (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)

Proof of Theorem 1stckgenlem
Dummy variables 𝑗 𝑘 𝑛 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 811 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2 ssun2 3810 . . . . . . . . 9 {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})
3 1stckgen.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 1stckgen.3 . . . . . . . . . . 11 (𝜑𝐹(⇝𝑡𝐽)𝐴)
5 lmcl 21149 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴𝑋)
63, 4, 5syl2anc 694 . . . . . . . . . 10 (𝜑𝐴𝑋)
7 snssg 4347 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
92, 8mpbiri 248 . . . . . . . 8 (𝜑𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
109adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
111, 10sseldd 3637 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 𝑢)
12 eluni2 4472 . . . . . 6 (𝐴 𝑢 ↔ ∃𝑤𝑢 𝐴𝑤)
1311, 12sylib 208 . . . . 5 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑤𝑢 𝐴𝑤)
14 nnuz 11761 . . . . . . 7 ℕ = (ℤ‘1)
15 simprr 811 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐴𝑤)
16 1zzd 11446 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 1 ∈ ℤ)
174ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐹(⇝𝑡𝐽)𝐴)
18 simplrl 817 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢 ∈ 𝒫 𝐽)
1918elpwid 4203 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢𝐽)
20 simprl 809 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝑢)
2119, 20sseldd 3637 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝐽)
2214, 15, 16, 17, 21lmcvg 21114 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
23 imassrn 5512 . . . . . . . . . . . . 13 (𝐹 “ (1...𝑗)) ⊆ ran 𝐹
24 ssun1 3809 . . . . . . . . . . . . 13 ran 𝐹 ⊆ (ran 𝐹 ∪ {𝐴})
2523, 24sstri 3645 . . . . . . . . . . . 12 (𝐹 “ (1...𝑗)) ⊆ (ran 𝐹 ∪ {𝐴})
26 id 22 . . . . . . . . . . . 12 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2725, 26syl5ss 3647 . . . . . . . . . . 11 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (𝐹 “ (1...𝑗)) ⊆ 𝑢)
28 1stckgen.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℕ⟶𝑋)
29 frn 6091 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℕ⟶𝑋 → ran 𝐹𝑋)
3028, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹𝑋)
3123, 30syl5ss 3647 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝑋)
32 resttopon 21013 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑋) → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
333, 31, 32syl2anc 694 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
34 topontop 20766 . . . . . . . . . . . . . . . 16 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
3533, 34syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
36 fzfid 12812 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑗) ∈ Fin)
37 ffun 6086 . . . . . . . . . . . . . . . . . . . 20 (𝐹:ℕ⟶𝑋 → Fun 𝐹)
3828, 37syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝐹)
39 elfznn 12408 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
4039ssriv 3640 . . . . . . . . . . . . . . . . . . . 20 (1...𝑗) ⊆ ℕ
41 fdm 6089 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:ℕ⟶𝑋 → dom 𝐹 = ℕ)
4228, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℕ)
4340, 42syl5sseqr 3687 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑗) ⊆ dom 𝐹)
44 fores 6162 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
4538, 43, 44syl2anc 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
46 fofi 8293 . . . . . . . . . . . . . . . . . 18 (((1...𝑗) ∈ Fin ∧ (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) → (𝐹 “ (1...𝑗)) ∈ Fin)
4736, 45, 46syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ∈ Fin)
48 pwfi 8302 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (1...𝑗)) ∈ Fin ↔ 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
4947, 48sylib 208 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
50 restsspw 16139 . . . . . . . . . . . . . . . 16 (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))
51 ssfi 8221 . . . . . . . . . . . . . . . 16 ((𝒫 (𝐹 “ (1...𝑗)) ∈ Fin ∧ (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
5249, 50, 51sylancl 695 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
5335, 52elind 3831 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin))
54 fincmp 21244 . . . . . . . . . . . . . 14 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
5553, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
56 topontop 20766 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
573, 56syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
58 toponuni 20767 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
593, 58syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
6031, 59sseqtrd 3674 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝐽)
61 eqid 2651 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
6261cmpsub 21251 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐹 “ (1...𝑗)) ⊆ 𝐽) → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6357, 60, 62syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6455, 63mpbid 222 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6564r19.21bi 2961 . . . . . . . . . . 11 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6627, 65syl5 34 . . . . . . . . . 10 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6766impr 648 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
6867adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
69 inss1 3866 . . . . . . . . . . . . . 14 (𝒫 𝑢 ∩ Fin) ⊆ 𝒫 𝑢
70 simprl 809 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ (𝒫 𝑢 ∩ Fin))
7169, 70sseldi 3634 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ 𝒫 𝑢)
7271elpwid 4203 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠𝑢)
73 simprll 819 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → 𝑤𝑢)
7473adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑤𝑢)
7574snssd 4372 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝑤} ⊆ 𝑢)
7672, 75unssd 3822 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ⊆ 𝑢)
77 vex 3234 . . . . . . . . . . . 12 𝑢 ∈ V
7877elpw2 4858 . . . . . . . . . . 11 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑢)
7976, 78sylibr 224 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢)
80 inss2 3867 . . . . . . . . . . . 12 (𝒫 𝑢 ∩ Fin) ⊆ Fin
8180, 70sseldi 3634 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ Fin)
82 snfi 8079 . . . . . . . . . . 11 {𝑤} ∈ Fin
83 unfi 8268 . . . . . . . . . . 11 ((𝑠 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑠 ∪ {𝑤}) ∈ Fin)
8481, 82, 83sylancl 695 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ Fin)
8579, 84elind 3831 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin))
86 ffn 6083 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶𝑋𝐹 Fn ℕ)
8728, 86syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℕ)
8887ad3antrrr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐹 Fn ℕ)
89 simprrr 822 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
9089adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
91 fveq2 6229 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
9291eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ 𝑤 ↔ (𝐹𝑛) ∈ 𝑤))
9392rspccva 3339 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
9490, 93sylan 487 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
95 elun2 3814 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ 𝑤 → (𝐹𝑛) ∈ ( 𝑠𝑤))
9694, 95syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
9796adantlr 751 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
98 elnnuz 11762 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
9998anbi1i 731 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
100 elfzuzb 12374 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑗) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
10199, 100bitr4i 267 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ 𝑛 ∈ (1...𝑗))
102 simprr 811 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝐹 “ (1...𝑗)) ⊆ 𝑠)
103 funimass4 6286 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
10438, 43, 103syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
105104ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
106102, 105mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠)
107106r19.21bi 2961 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ 𝑠)
108 elun1 3813 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ 𝑠 → (𝐹𝑛) ∈ ( 𝑠𝑤))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
110101, 109sylan2b 491 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ (𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛))) → (𝐹𝑛) ∈ ( 𝑠𝑤))
111110anassrs 681 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
112 simprl 809 . . . . . . . . . . . . . . . 16 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝑗 ∈ ℕ)
113112ad2antlr 763 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑗 ∈ ℕ)
114 nnz 11437 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
115 nnz 11437 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
116 uztric 11747 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
117114, 115, 116syl2an 493 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
118113, 117sylan 487 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
11997, 111, 118mpjaodan 844 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( 𝑠𝑤))
120119ralrimiva 2995 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤))
121 fnfvrnss 6430 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤)) → ran 𝐹 ⊆ ( 𝑠𝑤))
12288, 120, 121syl2anc 694 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ran 𝐹 ⊆ ( 𝑠𝑤))
123 elun2 3814 . . . . . . . . . . . . . 14 (𝐴𝑤𝐴 ∈ ( 𝑠𝑤))
124123ad2antlr 763 . . . . . . . . . . . . 13 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝐴 ∈ ( 𝑠𝑤))
125124ad2antlr 763 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐴 ∈ ( 𝑠𝑤))
126125snssd 4372 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝐴} ⊆ ( 𝑠𝑤))
127122, 126unssd 3822 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ ( 𝑠𝑤))
128 uniun 4488 . . . . . . . . . . 11 (𝑠 ∪ {𝑤}) = ( 𝑠 {𝑤})
129 vex 3234 . . . . . . . . . . . . 13 𝑤 ∈ V
130129unisn 4483 . . . . . . . . . . . 12 {𝑤} = 𝑤
131130uneq2i 3797 . . . . . . . . . . 11 ( 𝑠 {𝑤}) = ( 𝑠𝑤)
132128, 131eqtri 2673 . . . . . . . . . 10 (𝑠 ∪ {𝑤}) = ( 𝑠𝑤)
133127, 132syl6sseqr 3685 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤}))
134 unieq 4476 . . . . . . . . . . 11 (𝑣 = (𝑠 ∪ {𝑤}) → 𝑣 = (𝑠 ∪ {𝑤}))
135134sseq2d 3666 . . . . . . . . . 10 (𝑣 = (𝑠 ∪ {𝑤}) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑣 ↔ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})))
136135rspcev 3340 . . . . . . . . 9 (((𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13785, 133, 136syl2anc 694 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13868, 137rexlimddv 3064 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
139138anassrs 681 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
14022, 139rexlimddv 3064 . . . . 5 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
14113, 140rexlimddv 3064 . . . 4 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
142141expr 642 . . 3 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
143142ralrimiva 2995 . 2 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
1446snssd 4372 . . . . 5 (𝜑 → {𝐴} ⊆ 𝑋)
14530, 144unssd 3822 . . . 4 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑋)
146145, 59sseqtrd 3674 . . 3 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽)
14761cmpsub 21251 . . 3 ((𝐽 ∈ Top ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽) → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
14857, 146, 147syl2anc 694 . 2 (𝜑 → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
149143, 148mpbird 247 1 (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cun 3605  cin 3606  wss 3607  𝒫 cpw 4191  {csn 4210   cuni 4468   class class class wbr 4685  dom cdm 5143  ran crn 5144  cres 5145  cima 5146  Fun wfun 5920   Fn wfn 5921  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  Fincfn 7997  1c1 9975  cn 11058  cz 11415  cuz 11725  ...cfz 12364  t crest 16128  Topctop 20746  TopOnctopon 20763  𝑡clm 21078  Compccmp 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-lm 21081  df-cmp 21238
This theorem is referenced by:  1stckgen  21405
  Copyright terms: Public domain W3C validator