Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2val Structured version   Visualization version   GIF version

Theorem 1st2val 7361
 Description: Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
1st2val ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem 1st2val
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5334 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩)
2 fveq2 6352 . . . . . 6 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩))
3 df-ov 6816 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩)
4 vex 3343 . . . . . . . 8 𝑤 ∈ V
5 vex 3343 . . . . . . . 8 𝑣 ∈ V
6 simpl 474 . . . . . . . . 9 ((𝑥 = 𝑤𝑦 = 𝑣) → 𝑥 = 𝑤)
7 mpt2v 6915 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
87eqcomi 2769 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝑥)
96, 8, 4ovmpt2a 6956 . . . . . . . 8 ((𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = 𝑤)
104, 5, 9mp2an 710 . . . . . . 7 (𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}𝑣) = 𝑤
113, 10eqtr3i 2784 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘⟨𝑤, 𝑣⟩) = 𝑤
122, 11syl6eq 2810 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = 𝑤)
134, 5op1std 7343 . . . . 5 (𝐴 = ⟨𝑤, 𝑣⟩ → (1st𝐴) = 𝑤)
1412, 13eqtr4d 2797 . . . 4 (𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
1514exlimivv 2009 . . 3 (∃𝑤𝑣 𝐴 = ⟨𝑤, 𝑣⟩ → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
161, 15sylbi 207 . 2 (𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
17 vex 3343 . . . . . . . . . 10 𝑥 ∈ V
18 vex 3343 . . . . . . . . . 10 𝑦 ∈ V
1917, 18pm3.2i 470 . . . . . . . . 9 (𝑥 ∈ V ∧ 𝑦 ∈ V)
20 ax6ev 2056 . . . . . . . . 9 𝑧 𝑧 = 𝑥
2119, 202th 254 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) ↔ ∃𝑧 𝑧 = 𝑥)
2221opabbii 4869 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑥}
23 df-xp 5272 . . . . . . 7 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
24 dmoprab 6906 . . . . . . 7 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 𝑧 = 𝑥}
2522, 23, 243eqtr4ri 2793 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (V × V)
2625eleq2i 2831 . . . . 5 (𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} ↔ 𝐴 ∈ (V × V))
27 ndmfv 6379 . . . . 5 𝐴 ∈ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ∅)
2826, 27sylnbir 320 . . . 4 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = ∅)
29 dmsnn0 5758 . . . . . . . 8 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
3029biimpri 218 . . . . . . 7 (dom {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
3130necon1bi 2960 . . . . . 6 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
3231unieqd 4598 . . . . 5 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
33 uni0 4617 . . . . 5 ∅ = ∅
3432, 33syl6eq 2810 . . . 4 𝐴 ∈ (V × V) → dom {𝐴} = ∅)
3528, 34eqtr4d 2797 . . 3 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = dom {𝐴})
36 1stval 7335 . . 3 (1st𝐴) = dom {𝐴}
3735, 36syl6eqr 2812 . 2 𝐴 ∈ (V × V) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴))
3816, 37pm2.61i 176 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}‘𝐴) = (1st𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932  Vcvv 3340  ∅c0 4058  {csn 4321  ⟨cop 4327  ∪ cuni 4588  {copab 4864   × cxp 5264  dom cdm 5266  ‘cfv 6049  (class class class)co 6813  {coprab 6814   ↦ cmpt2 6815  1st c1st 7331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator