![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 7258 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 476 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2731 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
4 | df-br 4686 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
5 | 3, 4 | sylibr 224 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 〈cop 4216 class class class wbr 4685 Rel wrel 5148 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: cofuval 16589 cofu1 16591 cofu2 16593 cofucl 16595 cofuass 16596 cofulid 16597 cofurid 16598 funcres 16603 cofull 16641 cofth 16642 isnat2 16655 fuccocl 16671 fucidcl 16672 fuclid 16673 fucrid 16674 fucass 16675 fucsect 16679 fucinv 16680 invfuc 16681 fuciso 16682 natpropd 16683 fucpropd 16684 homahom 16736 homadm 16737 homacd 16738 homadmcd 16739 catciso 16804 prfval 16886 prfcl 16890 prf1st 16891 prf2nd 16892 1st2ndprf 16893 evlfcllem 16908 evlfcl 16909 curf1cl 16915 curf2cl 16918 curfcl 16919 uncf1 16923 uncf2 16924 curfuncf 16925 uncfcurf 16926 diag1cl 16929 diag2cl 16933 curf2ndf 16934 yon1cl 16950 oyon1cl 16958 yonedalem1 16959 yonedalem21 16960 yonedalem3a 16961 yonedalem4c 16964 yonedalem22 16965 yonedalem3b 16966 yonedalem3 16967 yonedainv 16968 yonffthlem 16969 yoniso 16972 utop2nei 22101 utop3cls 22102 |
Copyright terms: Public domain | W3C validator |