![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st0 | Structured version Visualization version GIF version |
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
Ref | Expression |
---|---|
1st0 | ⊢ (1st ‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 7316 | . 2 ⊢ (1st ‘∅) = ∪ dom {∅} | |
2 | dmsn0 5743 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 2 | unieqi 4581 | . 2 ⊢ ∪ dom {∅} = ∪ ∅ |
4 | uni0 4599 | . 2 ⊢ ∪ ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2796 | 1 ⊢ (1st ‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∅c0 4061 {csn 4314 ∪ cuni 4572 dom cdm 5249 ‘cfv 6031 1st c1st 7312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fv 6039 df-1st 7314 |
This theorem is referenced by: vafval 27792 |
Copyright terms: Public domain | W3C validator |