Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1smat1 Structured version   Visualization version   GIF version

Theorem 1smat1 29998
Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 20437. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
1smat1.1 1 = (1r‘((1...𝑁) Mat 𝑅))
1smat1.r (𝜑𝑅 ∈ Ring)
1smat1.n (𝜑𝑁 ∈ ℕ)
1smat1.i (𝜑𝐼 ∈ (1...𝑁))
Assertion
Ref Expression
1smat1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))

Proof of Theorem 1smat1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (𝐼(subMat1‘ 1 )𝐼) = (𝐼(subMat1‘ 1 )𝐼)
2 1smat1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
4 1smat1.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑁))
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
6 1smat1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
7 fzfi 12811 . . . . . . . 8 (1...𝑁) ∈ Fin
8 eqid 2651 . . . . . . . . 9 ((1...𝑁) Mat 𝑅) = ((1...𝑁) Mat 𝑅)
9 eqid 2651 . . . . . . . . 9 (Base‘((1...𝑁) Mat 𝑅)) = (Base‘((1...𝑁) Mat 𝑅))
10 1smat1.1 . . . . . . . . 9 1 = (1r‘((1...𝑁) Mat 𝑅))
118, 9, 10mat1bas 20303 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1...𝑁) ∈ Fin) → 1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
126, 7, 11sylancl 695 . . . . . . 7 (𝜑1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
13 eqid 2651 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
148, 13matbas2 20275 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
157, 6, 14sylancr 696 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
1612, 15eleqtrrd 2733 . . . . . 6 (𝜑1 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
1716adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 1 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
18 fz1ssnn 12410 . . . . . 6 (1...(𝑁 − 1)) ⊆ ℕ
19 simprl 809 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
2018, 19sseldi 3634 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
21 simprr 811 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
2218, 21sseldi 3634 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
23 eqidd 2652 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
24 eqidd 2652 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))
251, 3, 3, 5, 5, 17, 20, 22, 23, 24smatlem 29991 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
26 eqid 2651 . . . . 5 (1r𝑅) = (1r𝑅)
27 eqid 2651 . . . . 5 (0g𝑅) = (0g𝑅)
287a1i 11 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...𝑁) ∈ Fin)
296adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑅 ∈ Ring)
30 nnuz 11761 . . . . . . . . 9 ℕ = (ℤ‘1)
3120, 30syl6eleq 2740 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (ℤ‘1))
32 fznatpl1 12433 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → (𝑖 + 1) ∈ (1...𝑁))
333, 19, 32syl2anc 694 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 + 1) ∈ (1...𝑁))
34 peano2fzr 12392 . . . . . . . 8 ((𝑖 ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
3531, 33, 34syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
3635, 33jca 553 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)))
37 eleq1 2718 . . . . . . 7 (𝑖 = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → (𝑖 ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
38 eleq1 2718 . . . . . . 7 ((𝑖 + 1) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → ((𝑖 + 1) ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
3937, 38ifboth 4157 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4036, 39syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4122, 30syl6eleq 2740 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (ℤ‘1))
42 fznatpl1 12433 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝑗 + 1) ∈ (1...𝑁))
433, 21, 42syl2anc 694 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 + 1) ∈ (1...𝑁))
44 peano2fzr 12392 . . . . . . . 8 ((𝑗 ∈ (ℤ‘1) ∧ (𝑗 + 1) ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
4541, 43, 44syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
4645, 43jca 553 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)))
47 eleq1 2718 . . . . . . 7 (𝑗 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → (𝑗 ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
48 eleq1 2718 . . . . . . 7 ((𝑗 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → ((𝑗 + 1) ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
4947, 48ifboth 4157 . . . . . 6 ((𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
5046, 49syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
518, 26, 27, 28, 29, 40, 50, 10mat1ov 20302 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))) = if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)))
52 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → 𝑖 < 𝐼)
5352iftrued 4127 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = 𝑖)
5453eqeq1d 2653 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
55 simpr 476 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
5655iftrued 4127 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
5756eqeq2d 2661 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
58 simpr 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
5958iffalsed 4130 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
6059eqeq2d 2661 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = (𝑗 + 1)))
6120nnred 11073 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℝ)
6261ad2antrr 762 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
63 fz1ssnn 12410 . . . . . . . . . . . . . . . . 17 (1...𝑁) ⊆ ℕ
6463, 4sseldi 3634 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
6564nnred 11073 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
6665ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
6722nnred 11073 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℝ)
6867ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
69 1red 10093 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 1 ∈ ℝ)
7068, 69readdcld 10107 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑗 + 1) ∈ ℝ)
7152adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝐼)
7264nnzd 11519 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℤ)
7372ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
7422nnzd 11519 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℤ)
7574ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℤ)
7666, 68, 58nltled 10225 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼𝑗)
77 zleltp1 11466 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐼𝑗𝐼 < (𝑗 + 1)))
7877biimpa 500 . . . . . . . . . . . . . . 15 (((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ 𝐼𝑗) → 𝐼 < (𝑗 + 1))
7973, 75, 76, 78syl21anc 1365 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 < (𝑗 + 1))
8062, 66, 70, 71, 79lttrd 10236 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < (𝑗 + 1))
8162, 80ltned 10211 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ≠ (𝑗 + 1))
8281neneqd 2828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = (𝑗 + 1))
8362, 66, 68, 71, 76ltletrd 10235 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝑗)
8462, 83ltned 10211 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖𝑗)
8584neneqd 2828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
8682, 852falsed 365 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = (𝑗 + 1) ↔ 𝑖 = 𝑗))
8760, 86bitrd 268 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8857, 87pm2.61dan 849 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8954, 88bitrd 268 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
90 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ¬ 𝑖 < 𝐼)
9190iffalsed 4130 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = (𝑖 + 1))
9291eqeq1d 2653 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
93 simpr 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
9493iftrued 4127 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
9594eqeq2d 2661 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = 𝑗))
9667ad2antrr 762 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
9765ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
9861ad2antrr 762 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
99 1red 10093 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 1 ∈ ℝ)
10098, 99readdcld 10107 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ∈ ℝ)
10172ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
10220nnzd 11519 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℤ)
103102ad2antrr 762 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℤ)
10490adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 < 𝐼)
10597, 98, 104nltled 10225 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼𝑖)
106 zleltp1 11466 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐼𝑖𝐼 < (𝑖 + 1)))
107106biimpa 500 . . . . . . . . . . . . . . . 16 (((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐼𝑖) → 𝐼 < (𝑖 + 1))
108101, 103, 105, 107syl21anc 1365 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 < (𝑖 + 1))
10996, 97, 100, 93, 108lttrd 10236 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < (𝑖 + 1))
11096, 109ltned 10211 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ≠ (𝑖 + 1))
111110necomd 2878 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ≠ 𝑗)
112111neneqd 2828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ (𝑖 + 1) = 𝑗)
11396, 97, 98, 93, 105ltletrd 10235 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝑖)
11496, 113ltned 10211 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗𝑖)
115114necomd 2878 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖𝑗)
116115neneqd 2828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
117112, 1162falsed 365 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = 𝑗𝑖 = 𝑗))
11895, 117bitrd 268 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
119 simpr 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
120119iffalsed 4130 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
121120eqeq2d 2661 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = (𝑗 + 1)))
12220nncnd 11074 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℂ)
123122ad3antrrr 766 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 ∈ ℂ)
12422nncnd 11074 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℂ)
125124ad3antrrr 766 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑗 ∈ ℂ)
126 1cnd 10094 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 1 ∈ ℂ)
127 simpr 476 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → (𝑖 + 1) = (𝑗 + 1))
128123, 125, 126, 127addcan2ad 10280 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 = 𝑗)
129 simpr 476 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
130129oveq1d 6705 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → (𝑖 + 1) = (𝑗 + 1))
131128, 130impbida 895 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = (𝑗 + 1) ↔ 𝑖 = 𝑗))
132121, 131bitrd 268 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
133118, 132pm2.61dan 849 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13492, 133bitrd 268 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13589, 134pm2.61dan 849 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
136135ifbid 4141 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
137 eqid 2651 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
138 fzfid 12812 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ∈ Fin)
139 eqid 2651 . . . . . 6 (1r‘((1...(𝑁 − 1)) Mat 𝑅)) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))
140137, 26, 27, 138, 29, 19, 21, 139mat1ov 20302 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
141136, 140eqtr4d 2688 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
14225, 51, 1413eqtrd 2689 . . 3 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
143142ralrimivva 3000 . 2 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
1441, 2, 2, 4, 4, 16smatrcl 29990 . . . 4 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑𝑚 ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
145 elmapfn 7922 . . . 4 ((𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑𝑚 ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
146144, 145syl 17 . . 3 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
147 fzfi 12811 . . . . . 6 (1...(𝑁 − 1)) ∈ Fin
148 eqid 2651 . . . . . . 7 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149137, 148, 139mat1bas 20303 . . . . . 6 ((𝑅 ∈ Ring ∧ (1...(𝑁 − 1)) ∈ Fin) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1506, 147, 149sylancl 695 . . . . 5 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
151137, 13matbas2 20275 . . . . . 6 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑𝑚 ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
152147, 6, 151sylancr 696 . . . . 5 (𝜑 → ((Base‘𝑅) ↑𝑚 ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
153150, 152eleqtrrd 2733 . . . 4 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑𝑚 ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
154 elmapfn 7922 . . . 4 ((1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑𝑚 ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
155153, 154syl 17 . . 3 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
156 eqfnov2 6809 . . 3 (((𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))) ∧ (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
157146, 155, 156syl2anc 694 . 2 (𝜑 → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
158143, 157mpbird 247 1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  ifcif 4119   class class class wbr 4685   × cxp 5141   Fn wfn 5921  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cc 9972  cr 9973  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  cz 11415  cuz 11725  ...cfz 12364  Basecbs 15904  0gc0g 16147  1rcur 18547  Ringcrg 18593   Mat cmat 20261  subMat1csmat 29987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-smat 29988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator