MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthond Structured version   Visualization version   GIF version

Theorem 1pthond 27122
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1wlkd.v 𝑉 = (Vtx‘𝐺)
1wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1pthond (𝜑𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃)

Proof of Theorem 1pthond
StepHypRef Expression
1 1wlkd.p . . . . 5 𝑃 = ⟨“𝑋𝑌”⟩
2 1wlkd.f . . . . 5 𝐹 = ⟨“𝐽”⟩
3 1wlkd.x . . . . 5 (𝜑𝑋𝑉)
4 1wlkd.y . . . . 5 (𝜑𝑌𝑉)
5 1wlkd.l . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
6 1wlkd.j . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
7 1wlkd.v . . . . 5 𝑉 = (Vtx‘𝐺)
8 1wlkd.i . . . . 5 𝐼 = (iEdg‘𝐺)
91, 2, 3, 4, 5, 6, 7, 81wlkd 27119 . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
101fveq1i 6230 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
11 s2fv0 13678 . . . . . 6 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
1210, 11syl5eq 2697 . . . . 5 (𝑋𝑉 → (𝑃‘0) = 𝑋)
133, 12syl 17 . . . 4 (𝜑 → (𝑃‘0) = 𝑋)
142fveq2i 6232 . . . . . . 7 (#‘𝐹) = (#‘⟨“𝐽”⟩)
15 s1len 13422 . . . . . . 7 (#‘⟨“𝐽”⟩) = 1
1614, 15eqtri 2673 . . . . . 6 (#‘𝐹) = 1
171, 16fveq12i 6234 . . . . 5 (𝑃‘(#‘𝐹)) = (⟨“𝑋𝑌”⟩‘1)
18 s2fv1 13679 . . . . . 6 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
194, 18syl 17 . . . . 5 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2017, 19syl5eq 2697 . . . 4 (𝜑 → (𝑃‘(#‘𝐹)) = 𝑌)
21 wlkv 26564 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
22 3simpc 1080 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
239, 21, 223syl 18 . . . . . 6 (𝜑 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
243, 4, 23jca31 556 . . . . 5 (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
257iswlkon 26609 . . . . 5 (((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(#‘𝐹)) = 𝑌)))
2624, 25syl 17 . . . 4 (𝜑 → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(#‘𝐹)) = 𝑌)))
279, 13, 20, 26mpbir3and 1264 . . 3 (𝜑𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃)
281, 2, 3, 4, 5, 6, 7, 81trld 27120 . . 3 (𝜑𝐹(Trails‘𝐺)𝑃)
297istrlson 26659 . . . 4 (((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃𝐹(Trails‘𝐺)𝑃)))
3024, 29syl 17 . . 3 (𝜑 → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃𝐹(Trails‘𝐺)𝑃)))
3127, 28, 30mpbir2and 977 . 2 (𝜑𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃)
321, 2, 3, 4, 5, 6, 7, 81pthd 27121 . 2 (𝜑𝐹(Paths‘𝐺)𝑃)
333adantl 481 . . . . . . 7 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑋𝑉)
344adantl 481 . . . . . . 7 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑌𝑉)
35 simpl 472 . . . . . . 7 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
3633, 34, 35jca31 556 . . . . . 6 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
3736ex 449 . . . . 5 ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
3821, 22, 373syl 18 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
399, 38mpcom 38 . . 3 (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
407ispthson 26694 . . 3 (((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃𝐹(Paths‘𝐺)𝑃)))
4139, 40syl 17 . 2 (𝜑 → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃𝐹(Paths‘𝐺)𝑃)))
4231, 32, 41mpbir2and 977 1 (𝜑𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  wss 3607  {csn 4210  {cpr 4212   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  #chash 13157  ⟨“cs1 13326  ⟨“cs2 13632  Vtxcvtx 25919  iEdgciedg 25920  Walkscwlks 26548  WalksOncwlkson 26549  Trailsctrls 26643  TrailsOnctrlson 26644  Pathscpths 26664  PathsOncpthson 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-pthson 26670
This theorem is referenced by:  upgr1pthond  27128  lppthon  27129  1pthon2v  27131
  Copyright terms: Public domain W3C validator