![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pneg1e0 | Structured version Visualization version GIF version |
Description: 1 + -1 is 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1pneg1e0 | ⊢ (1 + -1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10196 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | negidi 10552 | 1 ⊢ (1 + -1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 (class class class)co 6793 0cc0 10138 1c1 10139 + caddc 10141 -cneg 10469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-sub 10470 df-neg 10471 |
This theorem is referenced by: xov1plusxeqvd 12525 bernneq 13197 n2dvdsm1 15313 bitsfzo 15365 plydivlem1 24268 iaa 24300 dvradcnv 24395 eulerid 24447 musum 25138 ppiub 25150 lgsdir2lem3 25273 m1lgs 25334 axlowdimlem13 26055 vcm 27771 nvge0 27868 hvsubid 28223 subfacval2 31507 dvradcnv2 39072 binomcxplemdvbinom 39078 binomcxplemnotnn0 39081 dirkertrigeqlem1 40832 fourierdlem24 40865 fourierswlem 40964 |
Copyright terms: Public domain | W3C validator |