![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version |
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p0e1 | ⊢ (1 + 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10207 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid1i 10436 | 1 ⊢ (1 + 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6815 0cc0 10149 1c1 10150 + caddc 10152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 |
This theorem is referenced by: xov1plusxeqvd 12532 bernneq 13205 bcpasc 13323 relexpaddg 14013 4sqlem19 15890 1259lem1 16061 2503lem2 16068 ef2pi 24450 dvsqrt 24704 dvcnsqrt 24706 loglesqrt 24720 efrlim 24917 basellem7 25034 1sgm2ppw 25146 chpchtlim 25389 axlowdimlem16 26058 vc0 27760 ballotlemic 30899 hgt750lemd 31057 divcnvlin 31947 faclim 31961 poimirlem16 33757 poimirlem31 33772 pell1qr1 37956 pell1qrgaplem 37958 rmxy0 38009 binomcxplemnotnn0 39076 clim1fr1 40355 dvxpaek 40677 itgiccshift 40718 itgperiod 40719 wallispi2lem2 40811 |
Copyright terms: Public domain | W3C validator |